Book review: Haynes manual – Saturn V

W. David Woods (2016). NASA Saturn V – 1967-1973 (Apollo 4 to Apollo 17 & Skylab) – Owner’s workshop manual – An insight into the history, development and technology of the rocket that launched man to the Moon. Haynes Publishing, Yeovil, Somerset. ISBN 978 0 85733 828 0. Hardcover, 27.2×20.8×1.4 cm. 172 pages, several photos or illustrations per page. £22.99 rrp.

ASE members will recall the author’s fascinating talk on how Apollo flew to the Moon. He has written other books on spaceflight, including co-authorship of the Haynes manuals on Gemini and the Lunar Rover. About 50 years after NASA settled on the Saturn IB and V designs as carrier for the Apollo programme, Woods places this iconic machine centre-stage and makes the engineering the story itself.

The first chapter deals with the history leading up to the Saturn rocket, not least Wernher von Braun and the German A-4, which under its belligerous assignation “V2” inflicted tens of thousands of casualties among the British population and the slave labourers that were forced to build it. Originally interested in spaceflight for its own sake, von Braun was again lead figure when NASA made spaceflight a civilian project again.

The main chapters deal with the rocket from the bottom up. The F1 engine is described in good and consistent detail. This is followed by the chapter about the S-IC stage – the first stage of the Saturn V and powered by five F1 motors. Description of the J2 engine is a bit shorter due to similarities with the F1. Both the second S-II stage and the third S-IVB stage are powered by five and one J2 motors resp. The bulk of the volume and mass of the rocket is necessarily in the tanks for liquid oxygen and fuel (kerosene in the S-IC and liquid hydrogen in the S-II and S-IVB). The IU instrument unit atop the third stage is given its own chapter as the brains of the rocket.

The penultimate chapter draws it all together and takes us through an average flight from launch to lunar transit injection and final disposal of the third stage. The average flight was not without complications, and so a variety of real flights serve to illustrate the problems that did occur on occasion.

The final chapter is about Skylab, which seems strange at first. The book otherwise refrains from speaking about the Apollo missions after the S-IVB had done its job and was usually orbiting the Sun or had crashed into the Moon. Launching the space station (without crew) was the last flight of a Saturn V. But also, Skylab itself was a modified S-IVB and in that sense part of the last Saturn V to fly.

It is fascinating to learn in some detail how these rocket motors work. There is elegance in the design, for example how the propellants are used to lubricate, and to drive the turbo pumps that then pump those same propellants to the combustion chamber. I was surprised that the iconic bell shape of the rocket motor nozzles is not solid metal cast or shaped from sheets, but is merely a collection of hundreds of parallel tiny metal pipes bonded together to make the shape required for best performance as an exhaust nozzle. One of the propellants is fed through these pipes down the nozzle wall and back up, both to cool the nozzle and to warm up the propellant, or even evaporate the liquid hydrogen prior to combustion.

The book has a lavish collection of high quality photographs and purpose-made drawings and diagrams, which make good use of colour. It does not so much work as a picture book, the text and pictures go together and match closely. Still, some diagrams illustrate more than the point in hand, such as the plot of g-force versus time into the rocket flight, which also illustrates how short the first-stage flight is compared to the second stage. In the text the level of detail is good and consistent.

There are a variety of technical terms used in the Saturn V programme. Some sound serious like “max-Q”, others may confuse like the two-page lecture on specific impulse in relation to weight and mass, resp. Others are refreshingly intuitive like the “pogo phenomenon” that could make astronauts very uncomfortable at times.

Should you wonder at the end, why some Apollo flights are hardly mentioned – Apollo 7, the three Skylab crew flights and the Apollo-Soyuz rendezvous – this is because they flew on the lesser, two-stage Saturn IB, which was sufficient to reach Earth orbit. Saturn V was all about the Moon, even if not much of the rocket itself reached the Moon. Some of its third stages flew by the Moon to enter solar orbit, others were crashed into the Moon to be monitored by seismometers already in place.

Horst Meyerdierks

Horst is currently Secretary of the Astronomical Society of Edinburgh and was the Journal’s previous editor, prior to it’s online incarnation.
Advertisements

Posted on 08/11/2016, in Uncategorized and tagged , , , , , , , , . Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s