Monthly Archives: December 2016

Scotland’s Sky in January, 2017

Moon between Venus and Mars on the 2nd

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. Arrows depict the motions of Mars during the month and of Venus from the 12th. (Click on map to enlarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. Arrows depict the motions of Mars during the month and of Venus from the 12th. (Click on map to enlarge)

The new year opens with the Moon as a slim crescent in our evening sky, its light insufficient to hinder observations of the Quadrantids meteor shower.

Lasting from the 1st to the 6th, the shower is due to reach its maximum at about 15:00 GMT on the 3rd. Perhaps because of the cold weather, or a lingering hangover from Hogmanay, this may be the least appreciated of the year’s top three showers. It can, though, yield more than 80 meteors per hour under the best conditions, with some blue and yellow and all of medium speed. It can also produce some spectacular events – I still recall a Quadrantids fireball many years ago that flared to magnitude -8, many times brighter than Venus.

Although Quadrantids appear in all parts of the sky, perspective means that their paths stream away from a radiant point in northern Bootes. Plotted on our north map, this glides from left to right low across our northern sky during the evening and trails the Plough as it climbs through the north-east later in the night. The shower’s peak is quite narrow so the optimum times for meteor-spotting are before dawn on the 3rd, when the radiant stands high in the east, and during the evening of that day when Quadrantids may follow long trails from north to south across our sky.

Mars and Venus continue as evening objects, improving in altitude in our south-south-western sky at nightfall and, in the case of Venus, becoming still more spectacular as it brightens from magnitude -4.3 to -4.6. Mars, more than one hundred times fainter, dims from magnitude 0.9 to 1.1 but is obvious above and to Venus’ left, their separation falling from 12° to 5° during the month as they track eastwards and northwards from Aquarius to Pisces.

On the evening of the 1st, Mars stands only 18 arcminutes, just over half a Moon’s breadth, above-left of the farthest planet Neptune though, since the latter shines at magnitude 7.9, we will need binoculars if not a telescope to glimpse it. At the time, Neptune, 4,556 million km away, is a mere 2.2 arcseconds wide if viewed telescopically and Mars appears 5.7 arcseconds across from a range of 246 million km. On that evening, the young Moon lies 8° below and right of Venus, while on the 2nd the Moon stands directly between Mars and Venus. The pair lie close to the Moon again on the 31st.

As its distance falls from 115 million to 81 million km this month, Venus swells from 22 to 31 arcseconds in diameter and its disk changes from 56% to 40% sunlit. In theory, dichotomy, the moment when it is 50% illuminated like the Moon at first quarter, occurs on the 14th. However, the way sunlight scatters in its dazzling clouds means that Venus usually appears to reach this state a few days early when it is an evening star – a phenomenon Sir Patrick Moore named the Schröter effect after the German astronomer who first reported it. Venus stands at its furthest to the east of the Sun, 47°, on the 12th.

The Sun climbs 6° northwards during January and stands closer to the Earth in early January than at any other time of the year. At the Earth’s perihelion at 14:00 GMT on the 4th the two are 147,100,998 km apart, almost 5 million km less than at aphelion on 3 July. Obviously, it is not the Sun’s distance that dictates our seasons, but rather the Earth’s axial tilt away from the Sun during winter and towards it in summer.

Sunrise/sunset times for Edinburgh change from 08:43/15:49 on the 1st to 08:09/16:44 on the 31st. The Moon is at first quarter on the 5th, full on the 12th, at last quarter on the 19th and new on the 28th.

The Moon lies below the Pleiades on the evening of the 8th and to the left of Aldebaran in Taurus on the next night. Below and left of Aldebaran is the magnificent constellation of Orion with the bright red supergiant star Betelgeuse at his shoulder. Soon in astronomical terms, but perhaps not for 100,000 years, Betelgeuse will disintegrate in a supernova explosion.

The relics of a supernova witnessed by Chinese observers in AD 1054 lies 15° further north and just 1.1° north-west of Zeta Tauri, the star at the tip of Taurus’ southern horn. The 8th magnitude oval smudge we call the Crab Nebula contains a pulsar, a 20km wide neutron star that spins 30 times each second.

The conspicuous planet in our morning sky is Jupiter which rises at Edinburgh’s eastern horizon at 01:27 on the 1st and at 23:37 on the 31st. Creeping eastwards 4° north of Spica in Virgo, it brightens from magnitude -1.9 to -2.1 and is unmistakable in the lower half of our southern sky before dawn. Catch it just below the Moon on the 19th when a telescope shows its cloud-banded disk to be 37 arcseconds broad at a distance of 786 million km. We need just decent binoculars to check out the changing positions of its four main moons.

Saturn, respectable at magnitude 0.5, stands low in our south-east before dawn, its altitude one hour before sunrise improving from 3° to 8° during the month. Look to its left and slightly down from the 6th onwards to glimpse Mercury. This reaches 24° west of the Sun on the 19th and brightens from magnitude 0.9 on the 6th to -0.2 on the 24th when the waning earthlit Moon stands 3° above Saturn.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on December 31st 2016, with thanks to the newspaper for permission to republish here.
Advertisements

Scotland’s Sky in December, 2016

Geminids suffer in the supermoonlight

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. An arrow depicts the motion of Mars after the first week of the month. (Click on map to enlarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. An arrow depicts the motion of Mars after the first week of the month. (Click on map to enlarge)

The Sun reaches its farthest south at our winter solstice at 10:44 GMT on the 21st, as Mars and the brilliant Venus stand higher in our evening sky than at any other time this year. This is not a coincidence, for both planets are tracking eastwards and, more importantly, northwards in the sky as they keep close to the ecliptic, the Sun’s path over the coming weeks and months. Meantime, Jupiter is prominent during the pre-dawn hours while Orion is unmistakable for most of the night and strides proudly across the meridian at midnight in mid-December.

As the sky darkens this evening, Pegasus with its iconic, but rather empty, Square is nearing the meridian and the Summer Triangle (Vega, Deneb and Altair) stands high in the south-west.

By our map times, Altair is setting in the west and Orion stands in the south-east, the three stars of Belt pointing down to where Sirius, our brightest night-time star, will soon rise. Sirius, the red supergiant Betelgeuse at Orion’s shoulder and Procyon in Canis Minor, almost due east of Betelgeuse, form a near-equilateral triangle which has come to be known as the Winter Triangle.

Above Orion is Taurus, home to the Pleiades star cluster and the bright orange giant star Aldebaran, the latter located less than halfway between us and the V-shaped Hyades cluster.

Look for the almost-full Moon below the Pleiades and to the right of Aldebaran and the Hyades on the evening of the 12th and watch it barrel through the cluster during the night, occulting (hiding) several of the cluster’s stars on the way. As they dip low into the west on the following morning, the Moon occults Aldebaran itself, the star slipping behind the Moon’s northern edge between 05:26 and 05:41 as seen from Edinburgh. Even though this is the brightest star to be occulted this year, the Moon’s brilliance means we may well need a telescope to view the event.

Sunrise/sunset times for Edinburgh vary from 08:20/15:44 on the 1st to 08:42/15:40 on the 21st and 08:44/15:48 on the 31st. The Moon is at first quarter on the 7th and full on the 14th when, once again, it is near its perigee, its closest point to the Earth. Despite the fact that the Moon appears a barely perceptible 7% wider than it does on average, we can look forward to yet another dose of over-hyped supermoon hysteria in the media. The Moon’s last quarter comes on the 21st and it is new on the 29th.

Sadly, the Moon does its best to swamp the annual Geminids meteor shower which lasts from the 8th to the 17th and is expected to peak at about 20:00 on the 13th. Its meteors are medium-slow and, thankfully, there are enough bright ones that several should be noticeable despite the moonlight. Without the moonlight, and under perfect conditions, this might have been our best display of 2016, with 100 or more meteors per hour.

Geminids are visible in all parts of the sky, but perspective makes them appear to diverge from a radiant point near the star Castor in Gemini, marked near the eastern edge of our north map. This radiant climbs from our north-eastern horizon at nightfall to pass high in the south at 02:00.

Venus stands 10° above Edinburgh’s southern horizon at sunset on the 1st and shines spectacularly at magnitude -4.2 as it sinks to set in the south-west almost three hours later. The young earthlit Moon stands 10° above-right of Venus on the 2nd, 5° above the planet on the 3rd and, one lunation later, 20° below-right of the Moon on Hogmanay. By then, Venus is twice as high at sunset and (just) brighter still at magnitude -4.3. A telescope shows its dazzling gibbous disk which swells from 17 to 22 arcseconds in diameter as the sunlit portion shrinks from 68% to 57%.

As Venus speeds from Sagittarius to Capricornus, so Mars keeps above and to its left as it moves from Capricornus into Aquarius and into the region of sky above our south-western horizon at the map times. Mars is only a fraction as bright, though, and fades from magnitude 0.6 to 0.9. It also appears much smaller, only 6 arcseconds, so that telescopes now struggle to reveal any surface features. Spot Mars to the left of the Moon on the 4th and below-right of the Moon on the 5th.

Mercury is farthest east of the Sun, 21°, on the 11th but hugs our south-western horizon at nightfall and is unlikely to be seen. It reaches inferior conjunction between the Sun and Earth on the 28th by which time Saturn, which passes beyond the Sun on the 10th, might just be glimpsed low above the south-eastern horizon before dawn. On the 27th, it shines at magnitude 0.5 and lies 7° below-left of the slender waning Moon.

Jupiter is conspicuous at magnitude -1.8 to -1.9 and the real star of our morning sky. Rising in the east for Edinburgh at 03:04 on the 1st and 01:31 on the 31st, it climbs well up into our southern sky before dawn where it stands above Virgo’s leading star Spica and draws closer during the month.

Jupiter, Spica and the Moon form a neat triangle before dawn on the 23rd, when Jupiter is 850 million km away and appears 35 arcseconds wide through a telescope. Any decent telescope shows its parallel cloud belts, while binoculars reveal its four main moons which swap places from side to side of the disk as they orbit the planet in periods of between 1.8 and 17 days.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on December 1st 2016, with thanks to the newspaper for permission to republish here.