Blog Archives

Scotland’s Sky in December, 2019

The Bronze Age bull that leads Orion across our night sky

Sky maps looking north and south, showing the position of the main constellations at different times during the month.

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to enlarge)

The two brightest planets hug our south-south-western horizon after sunset at present, but soon set themselves to leave Orion to dominate our December nights which include the longest ones of the year.

The Sun’s southwards motion halts at our winter solstice at 04:19 GMT on the 22nd. Sunrise/sunset times for Edinburgh vary from 08:19/15:44 on the 1st, to 08:42/15:40 on the 22nd at 08:44/15:47 on Hogmanay. Because the Earth is tipped on its axis and in an elliptical orbit about the Sun, the solstice coincides with neither our latest sunrise nor earliest sunset. Instead, Edinburgh’s latest sunrise at 08:44 is not until the 29th, while our earliest sunset at 15:38 comes on the 15th.

The Moon is at first quarter on the 4th, full on the 12th, at last quarter on the 19th and new on the 26th when it appears too small to hide the Sun completely. Instead, an annular or ring solar eclipse is visible from Saudi Arabia to Indonesia by way of southern India.

Venus blazes at magnitude -3.9 as it stands 5° high thirty minutes after sunset on the 1st. It lies 7° to the left of Jupiter, one seventh as bright at magnitude -1.8, but we lose sight of the latter within a few days as it heads towards the Sun’s far side on the 27th.

Venus, meanwhile, tracks eastwards to pass 2° below the much fainter planet Saturn (magnitude 0.6) on the 10th. By the 27th, Saturn is hard to spot in the twilight when it stands 3° right of the very slender young and earthlit Moon. The next evening has the Moon 5° below and right of Venus which, by then, is established as an impressive evening star that stands 12° high thirty minutes after sunset.

Vega, the brightest star in the Summer Triangle, stands high in the south-west at nightfall, but sinks into the north-west sky by our map times. Meanwhile, Taurus the Bull, with its leading star Aldebaran and the Pleiades star cluster, climbs from low in the east-north-east into the south-east. Below Taurus is the unmistakable form of Orion with the three stars of his Belt slanting up to Aldebaran. By midnight, Taurus stands high on the meridian, above and to the right of Orion whose Belt also points downwards to our brightest nighttime star, Sirius in Canis Major.

The Pleiades, a so-called open star cluster, is sometimes called the Seven Sisters, though I leave you to judge whether this is fair description of its naked-eye appearance. Certainly, binoculars and telescopes show impressive views of many more than seven stars. Photographs reveal them to be embedded in bluish wispy haze that astronomers once took to be the remains of the material from which the stars formed. Now we understand the haze to be a cloud of dust which the cluster has encountered as it orbits our Milky Way. The cluster lies 444 light years (ly) away and may be less than 100 million years old – much older and the young blue and luminous stars that illuminate the dust would not have survived.

Taurus has represented a bull in the mythologies of many ancient civilisations since the early Bronze Age, though typically only the horns, head and forequarters are imagined in the sky. Taurus’ face is marked by a V-shaped pattern of stars that comprise the Hyades, the nearest of all the known open star clusters in the sky. The measurement of its distance as 153 ly is a vital yardstick in the fixing of other stellar distances in our galaxy and beyond. The bright red giant star Aldebaran, sometimes taken to be the Bull’s bloodshot eye, is not, though, a member of the Hyades, being a foreground object at 65 ly.

Perhaps the foremost astrophysical object in Taurus is the Crab Nebula which lies 1.1°, or two Moon-diameters, north-west of the star Zeta, the tip of Taurus’ unfeasibly long southern horn. Also known as M1, it is the remains of a supernova witnessed by Chinese observers in 1054, being seen as a naked-eye object for around two years and even being visible in daylight. The expanding debris of the stellar explosion now appears as an eight-magnitude smudge in small telescopes and contains a pulsar, a neutron star some 30 km wide that spins thirty times a second and beams out flashes of radiation at every wavelength from gamma rays to radio waves.

Above and to the left of Orion lies Gemini the Twins whose main stars, Castor and Pollux, sit one above the other as they climb through our eastern sky. Slow meteors of the Geminids shower diverge from a radiant near Castor (see chart) between the 4th and 17th. The display is expected to peak on the 14th at rates that could exceed 100 meteors per hour for an observer under a clear dark sky. It is a pity that the Moon lies just a few degrees below Pollux at the maximum and sheds enough light to swamp many of the fainter Geminids this time around.

The radiant of the month’s second shower, the Ursids, lies just below the first “R” in “URSA MINOR” on our north star map. The shower is active between the 17th and 26th with its peak of some 10 medium-speed meteors per hour under (thankfully) moonless skies on the 23rd.

The normally shy innermost planet Mercury is currently shining brightly at about magnitude -0.5 low down in the south-east for two hours before sunrise. However, it sinks lower each morning and is likely lost in the dawn twilight by midmonth. Higher and to its right, and in line with the bright star Spica in Virgo, is the fainter (magnitude 1.7) Mars which tracks 20° east-south-eastwards in Libra this month, and passes a mere 0.2° north of the double star Zubenelgenubi on the 12th. Catch the Red Planet to the right of the waning Moon before dawn on the 23rd.

Diary for 2019 December

4th           07h First quarter

8th           13h Interstellar Comet Borisov closest to Sun (300m km)

11th         05h Venus 1.8° S of Saturn

11th         12h Moon 3° N of Aldebaran

12th         05h Full moon

14th         14h Peak of Geminids meteor shower

15th         16h Moon 1.3° N of Praesepe

17th         05h Moon 4° N of Regulus

19th         05h Last quarter

22nd         04:19 Winter solstice

23rd         Peak of Ursids meteors shower

23rd         02h Moon 4° N of Mars

26th         05h New moon and annular solar eclipse

27th         12h Moon 1.2° S of Saturn

27th         18h Jupiter in conjunction with Sun

29th         02h Moon 1.0° S of Venus

Alan Pickup

This is an extended version, with added diary, of Alan’s article published in The Scotsman on November 30th 2019, with thanks to the newspaper for permission to republish here.
Please note, this is the last time the monthly sky update will appear on the Journal.  From now on, the articles will appear in the news section of the Astronomical Society of Edinburgh website.

Scotland’s Sky in November, 2019

Mercury crosses Sun as bright planets converge in evening sky

Sky maps looking north and south, showing the position of the main constellations at different times during the month.

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 30th. (Click on map to enlarge)

With all the planets in view and a sky brimming with interest from dusk to dawn, November is a rewarding month for stargazers, particularly since temperatures have yet to plumb their wintry lows. Our astro-highlight of the month, if not the year, though, comes in daylight on the 11th when Mercury appears as a small inky dot crossing the Sun’s face.

Perhaps one puzzle is why such transits of Mercury are not more frequent. After all, Mercury orbits the Sun every 88 days and, as we see it, passes around the Sun’s near side at its so-called inferior conjunction every 116 days on average.

The reason we don’t enjoy around three transits each year is that the orbits of Mercury and the Earth are tipped at 7° in relation to each other. For a transit to occur, we need Mercury to reach inferior conjunction near the place where its orbit crosses the orbital plane of the Earth, and currently this can occur only during brief windows each May and November. This condition restricts us to around one transit of Mercury every seven years on average but there are wide variations. Indeed, our last transit occurred as recently as May 2016 while we need to wait until November 2032 for the next. We must hang around even longer, and travel beyond Europe, for the next transit of Venus in 2117.

This month’s transit begins at 12:35 on the 11th when the tiny disk of Mercury, only 10 arcseconds wide, begins to enter the eastern (left) edge of the Sun. The Sun stands 16° high in Edinburgh’s southern sky at that time but it falls to 5° high in the south-west by 15:20 when Mercury is at mid-transit, only one twenty-fifth of the Sun’s diameter above the centre of the solar disk. The Sun sets for Edinburgh at 16:13 so we miss the remainder of the transit which lasts until 18:04.

The usual warnings about solar observation apply so that, if you value your eyesight, you must never observe the Sun directly. Solar glasses that you might have used for an eclipse will be no help since Mercury is too small to see seen without magnification. Instead, use binoculars or, better, a telescope which has been equipped securely with an approved solar filter.

A few days after its transit, Mercury begins its best morning apparition of the year. Between the 23rd and 30th, it rises more than two hours before the Sun and shines brightly at magnitude -0.1 to -0.5 while 7° high in the south-east one hour before sunrise. Higher but fainter in the south-east before dawn is Mars (magnitude 1.7) which tracks south-eastwards in Virgo to pass 3° north of Spica on the 8th and end the period 11° above-right of Mercury. Catch it below the waning Moon on the 24th.

The Sun’s southwards progress leads to sunrise/sunset time for Edinburgh changing from 07:19/16:33 GMT on the 1st to 08:17/15:45 on the 30th. The Moon is at first quarter on the 4th, full on the 12th, at last quarter on the 19th and new on the 26th.

Three bright planets vie for attention in our early evening sky but the brightest, Venus, is currently also the first to drop below the horizon as the twilight fades. Blazing at magnitude -3.9, it stands less than 4° high in the south-west at Edinburgh’s sunset on the 1st and sets itself only 38 minutes later.

Second in brightness comes Jupiter, magnitude -1.9, which lies some 24° to the left of Venus on the 1st and sets two hours after sunset. Then we have magnitude 0.6 Saturn which lies another 22° to Jupiter’s left so that it is about 10° high in the south-south-west as darkness falls tonight and sets about 50 minutes before our map times.

Venus tracks quickly eastwards to pass 1.4° south of Jupiter on the 24th when it stands 6° high at sunset as it embarks on an evening spectacular that lasts until May. The young Moon lies 7° below-right of Saturn on the 1st, makes a stunning sight between Jupiter and Venus on the 28th and is nearing again Saturn on the 29th.

Vega, the leader of the Summer Triangle, blazes just south-west of overhead at nightfall at present but is sinking near the middle of our western sky by our map times. Well up in the south by then is the Square of Pegasus whose top-left star, Alpheratz, leads the three main stars of Andromeda, lined up to its left. A spur of two fainter stars above the middle of these, Mirach, points the way to the oval glow of the Milky Way’s largest neighbouring galaxy, the famous Andromeda Galaxy, M31.

Below the Square is the dim expanse of Pisces that lies between the distant binocular-brightness planets Neptune and Uranus, in Aquarius and Aries respectively.

Orion, the centerpiece of our winter’s sky, is rising in the east at our map times and takes six hours, until the small hours of the morning, to reach its highpoint in the south. Preceding Orion is Taurus and the Pleiades while on his heals comes Sirius in Canis Major which twinkles its way across our southern sky before dawn.

The morning hours, particularly on the 19th, are also optimum for glimpsing members of the Leonids meteor shower. Arriving between the 6th and 30th, but with a sharp peak expected late on the 18th, these swift meteors diverge from Leo’s Sickle which rises in the north-east before midnight and climbs to stand in the south before dawn. Fewer than 15 meteors per hour may be sighted this year, far below the storm-force levels witnessed around the turn of the century.

Diary for 2019 November

2nd           07h Moon 0.6° S of Saturn

4th           10h First quarter

8th           15h Mars 3° N of Spica

11th         15h Mercury transits Sun at inferior conjunction

12th         14h Full moon

14th         04h Moon 3.0° N of Aldebaran

18th         11h Moon 1.2° N of Praesepe

18th         23h Peak of Leonids meteor shower

19th         21h Last quarter

20th         00h Moon 4° N of Regulus

24th         09h Moon 4° N of Mars

24th         14h Venus 1.4° S of Jupiter

25th         03h Moon 1.9° N of Mercury

26th         15h New moon

28th         10h Mercury furthest W of Sun (20°)

28th         11h Moon 0.7° N of Jupiter

28th         19h Moon 1.9° N of Venus

29th         21h Moon 0.9° S of Saturn

Alan Pickup

This is an extended version, with added diary, of Alan’s article published in The Scotsman on October 31st 2019, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in December, 2014

Jupiter outstanding as the Geminids meteors fly

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to englarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to englarge)

December brings our longest nights of the year and what may be 2014’s richest meteor shower. Indeed, there is an argument for ranking December nights as the most spectacular of the year if only because Orion, and the sparkling constellations that attend him, stand at their highest near the meridian at midnight. Of the bright planets, Jupiter outshines every star and is well placed from mid-evening onwards, but the others are lurking shyly near the Sun and require a little more effort.

Jupiter is unmistakable from the moment it rises in the east-north-east some 35 minutes after our star map times. Improving in brightness from magnitude -2.3 to -2.5 this month, it climbs to pass high in the south and onwards into the south-west before dawn. We find it in Leo, to the right of the Sickle and less than 8° above-right of Regulus. It is here that it reaches a stationary point on the 9th before beginning a westerly motion which carries it back into Cancer just a day before its opposition in early February.

With its large disk and changing cloud-patterns, Jupiter is always an rewarding telescopic sight while the motions from side to side of its four main moons may be followed using nothing more than decent binoculars. When Jupiter lies near the Moon on the night of the 11th-12th, it is 717 million km distant and its globe appears 41 arcsec in diameter.

Orion stands clear of the horizon in the east-south-east at the map times. Its main stars, the blue-white supergiant Rigel at Orion’s knee and the contrasting red supergiant Betelgeuse at his shoulder, are among the ten brightest. the trio of stars between them form Orion’s Belt while hanging below the Belt is Orion’s Sword and the fuzzy glow of the Orion Nebula where new stars and planets are forming, albeit slowly, before our eyes.

A line upwards along the Belt extends to Aldebaran (close to the Moon on the 5th-6th) and onwards to the Pleiades or Seven Sisters star cluster. Carry the line downwards towards Sirius which rises one hour after our map times and is our brightest star after the Sun.

North and east (above-left) of Orion lies Gemini with its twins Castor and Pollux, while close to Castor (see chart) is the radiant point for the annual Geminids meteor shower. Bright medium-slow meteors streak in all parts of the sky between the 8th and 17th but all radiate away from this point as they follow parallel paths into the upper atmosphere. The radiant climbs from the north-north-east horizon at nightfall to pass high in the south at about 02:00. Meteor rates are expected to be highest during the 24 hours around 07:00 on the morning of the 14th when more than 80 Geminids per hour might be counted under ideal conditions. The Moon is much less obtrusive than during the Geminids last year.

The Square of Pegasus crosses the high meridian in the early evening and shifts to the south-west by our map times as Andromeda stretches up from its upper-left corner. High in the south are the two smaller constellations of Triangulum the Triangle and Aries the Ram. Aries’ main star, Hamal, is identical in brightness to Polaris, the Pole Star, but lies perhaps five times closer to us at 66 light years, It also appears to have a planet that is larger than Jupiter and takes 381 days to orbit at a distance slightly greater than that between the Earth and the Sun.

Aries also gives its name to the celestial counterpart of the Greenwich meridian. Longitudes in the sky are measured eastwards from the so-called First Point of Aries where the Sun crosses the sky’s equator at the spring or vernal equinox. When the Greek astronomer Hipparchus assigned the name more than two thousand years ago this point was located in Aries. However, the Earth wobbles on its axis over a period of 26,000 years with the result that the First Point of Aries has slipped more than 30° westwards against the stars and now lies to the south of the Square of Pegasus in the dim constellation of Pisces.

The Sun is furthest south in the sky at 23:03 GMT on the 21st, the moment of our winter solstice. Sunrise/sunset times for Edinburgh change from 08:19/15:44 on the 1st, to 08:43/15:40 on the 21st and 08:44/15:48 on the 31st. Nautical twilight persists for around 94 minutes at dawn and dusk. The Moon is full on the 6th, at last quarter on the 14th, new on the 22nd and at first quarter on the 28th.

Mars, the best of the planets after Jupiter, is the brightest object low in the south-south-west at nightfall and climbs a little higher from night to night as it slides northwards in relation to the Sun. It does, though, dim from magnitude 1.0 to 1.1 as it tracks eastwards through Capricornus. It sets at about 19:15 and stands left of the young earthlit Moon on Christmas Eve.

By mid-month, and provided we have a clear south-western horizon, we may be able to spot the brilliant (magnitude -3.9) evening star Venus just after sunset. At Hogmanay, Venus stands 6° high at sunset and sets itself 76 minutes later. Mercury slips around the Sun’s far side on the 8th and is destined to join Venus as an evening star in the New Year.

Saturn is emerging as a pre-dawn object low in the south-east where it shines at magnitude 0.5 as it tracks from Libra into Scorpius. Catch it 7° below-left of the waning Moon on the 19th.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on November 28th 2014, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in November, 2014

Europe’s Philae probe to attempt first touchdown on comet

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 30th. (Click on map to englarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 30th. (Click on map to englarge)

In an exciting month in astronomy and space exploration, November should bring the first soft landing on a comet when the European Space Agency’s Philae craft detaches from the Rosetta probe and drops gently onto the icy nucleus of Comet Churyumov-Gerasimenko.

Our sky at nightfall s similar to that of a month ago although, with our return to GMT, darkness arrives more than two hours earlier in the evening. Mars continues as the only bright planet at these times, visible low in Edinburgh’s south-south-western sky and fading only a little from magnitude 0.9 to 1.0 as it tracks eastwards above the Teapot of Sagittarius.

However, even though Mars is drawing closer to the Sun, its altitude at the end of nautical twilight improves from 5° to 9° during November as the Sun plunges more than 7° southwards in the sky and Mars edges almost 3° northwards. This also means that Mars-set in the south-west occurs at about 19:05 throughout the period. It stands below the young crescent Moon on the 26th.

Sunrise/sunset times for Edinburgh change from 07:19/16:33 GMT on the 1st to 08:17/15:45 on the 30th as the duration of nautical twilight at dawn and dusk extends from 83 to 93 minutes. The Moon is full on the 6th, at last quarter on the 14th, new on the 22nd and at first quarter on the 29th.

Comet Churyumov-Gerasimenko lies 6° south-east of Mars on the 12th but is a very dim telescopic object some 450 million km from the Sun. On that day Philae is due to unlatch from Rosetta and take about seven hours to fall 22.5km, coming to rest on tripod legs at about 16:00 GMT atop the head of the comet’s strange “rubber-duck” shape. To stop itself bouncing off into space in defiance of the comet’s feeble gravitational pull, it should then fire a tethered harpoon to anchor itself to the surface.

The comet’s 6-year orbit is carrying it closer to the Sun, eventually to reach perihelion at a distance of 186 million km next August. Meantime, its activity is picking up and Rosetta is imaging jets of dust and gas emerging, mainly from the duck’s neck region at present. With Philae in position to also monitor conditions at the surface, and even below the crust using sonar, seismographs and permittivity probes, our knowledge of what makes comets tick should soon be transformed.

The Summer Triangle of Vega, Deneb and Altair, lies in the west at our map times as Orion rises in the east below Taurus and the Pleiades. The Square of Pegasus stands high on the meridian with the three main stars of Andromeda, Alpheratz, Mirach and Almach, leading off from its top-left corner. The Andromeda Galaxy, M31, could hardly be better placed, being visible to the naked eye in a decent sky and not difficult at all through binoculars. It stands 2.5 million light years (ly) away and appears as an oval smudge some 8° above Mirach.

A line through the Square’s two right-hand stars points the way to Fomalhaut, bright but very low in the south. I mentioned last time that it may have at least a couple of planets. In fact, the first so-called extrasolar planet circling a solar-type star was discovered in 1995 and is about half the size of Jupiter yet orbits in only 4.2 days at a distance only one seventh of that of Mercury from the Sun. The star concerned is 51 Pegasi, magnitude 5.5 and 50 ly distant, which is unmistakable through binoculars just 1.5° or 3 Moon-widths to the right of the Scheat-Markab line.

Of the 1,800-plus extrasolar planets now known, no less than four orbit Upsilon Andromedae, a fourth magnitude star at 44 ly that stands between Mirach and Almach (see chart).

Jupiter, is creeping eastwards to the right of the famous Sickle of Leo. Rising in the east-north-east at about 23:20 on the 1st and as early as 21:40 on the 30th, it is prominent until dawn as it climbs through our south-eastern sky to pass about 50° high on our meridian before dawn. The Jovian disk is 38 arcseconds across when Jupiter lies near the Moon on the night of 13/14th.

The annual Leonids meteor shower lasts from the 15th to the 20th, building to a sharp peak on the morning of the 18th. Its super-swift meteors flash in all parts of the sky, though their paths radiate from a point in the Sickle. There is little moonlight interference this year, but meteor rates may be well down on what they were a few years ago when the shower’s parent comet was in the vicinity.

Venus sets too soon after the Sun to be seen, and with Saturn reaching conjunction on the Sun’s far side on the 18th, our only other observable bright planet is Mercury, fortunately putting on its best morning show of 2014.

On the 1st Mercury rises two hours before the Sun and shines at magnitude -0.5 as it climbs to an altitude of 10° in the east-south-east forty minutes before sunrise. Although it soon brightens to magnitude 0.8, it also slips back towards the Sun, so that by the 14th it rises 89 minutes before the Sun and is 6° high forty minutes before sunrise. Given a clear horizon, though, binoculars should show it easily and it should be a naked-eye object until it is swamped by the brightening twilight. Look for Virgo’s leading star, Spica, climbing from below Mercury to pass 5° to its right on the 7th.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on October 31st 2014, with thanks to the newspaper for permission to republish here.