Blog Archives

Scotland’s Sky in June, 2019

Is Jupiter’s Great Red Spot unfurling before our eyes?

Sky maps looking north and south, showing the position of the main constellations at different times during the month.

The maps show the sky at 01:00 BST on the 1st, midnight on the 16th and 23:00 on the 30th. (Click on map to enlarge)

The Sun reaches its most northerly point at 16:54 BST on the 21st, marking the summer solstice in our northern hemisphere. Between its setting in the north-west and its rising in the north-east, it follows only a shallow arc below Edinburgh’s horizon and stands, at most, 10.6° below Edinburgh’s due-north horizon at 01:14 BST. As a result, twilight persists throughout our June nights and we must stay up late to glimpse even the brighter stars and planets.

The sunrise/sunset times for Edinburgh change from 04:36/21:46 BST on the 1st, to 04:26/22:03 on the 21st and 04:30/22:02 on the 30th. The Moon is new on the 3rd, at first quarter on the 10th, full on the 17th and at last quarter on the 25th.

At times like these, some stargazers forsake their hobby for a couple of months while others switch to observing the Sun, or, perhaps, noctilucent clouds. This June, though, the giant planet Jupiter is well worth a look as it comes to opposition on the 10th. It is then closest to us (641 million km) and stands directly opposite the Sun, so that it rises in the south-east at sunset and passes (for Edinburgh) less than 12° high in the south in the middle of the night.

Conspicuous at magnitude -2.6 as it creeps westwards against the stars of southern Ophiuchus, Jupiter outshines every other object in our night sky except for the Moon which lies close to it on the night of the 16th-17th. A small telescope or good steadily-held binoculars reveal its four main moons, the Galilean moons, as they orbit from east to west of the planet in periods that range from 1.8 days for Io to 16.7 days for Callisto. Jupiter has more moons, 79 at the latest count, than any other planet, with Saturn’s tally of 62 coming second. Jupiter’s 75 lesser moons, though, are too small and dim to be spotted using any but the largest telescopes.

Jupiter’s globe is shrouded in clouds, mainly of ammonia crystals but tinted red and brown by other compounds which may include hydrocarbons. Telescopes show bands of darker cloud and a plethora of streaks and spots that transit smartly across the disk as the planet rotates in its sub-ten-hour day.

The most famous feature, the Great Red Spot, is an anticyclonic storm that may be more than 300 years old and was once larger than three Earths. It has shrunk significantly over the last century but observations over the past two weeks suggest something startling may be afoot and even that the spot may be disintegrating. It appears that 10,000-km-long streamers of reddish gas, perhaps methane-rich, are peeling away from the spot into the adjacent cloud band, the South Equatorial Belt, that circles the planet. Likened by some to the spot unfurling, nothing on this scale has been seen before so it is just as well that NASA’s Juno probe has a ring-side view as it orbits Jupiter.

Some 30° to the east of Jupiter, below the so-called Teaspoon of Sagittarius, is our Sun’s other gas giant planet, Saturn. Rising in the south-east about one hour before our map times, it brightens slightly from magnitude 0.3 to 0.1 to rival the two brightest stars on our south map – Vega in Lyra which stands very high in the east-south-east and Arcturus in Bootes in the middle of our south-western sky. When Saturn lies just left of the Moon on the night of the 18th, it lies 1,361 million km away and a telescope shows its disk and rings to span 18 and 41 arcseconds respectively.

The constellations of Ophiuchus and Hercules sprawl across the meridian at the map times, though our twilight means that this is not the best month for spotting M13, the Great Globular Cluster in Hercules (see map). Discovered by Edmond Halley of comet fame in 1714, this ball of hundreds of thousands of stars is some 160 light years across, 22,200 light years away and is thought to have formed 11.65 billion years ago. Under the best conditions, binoculars show it as a fuzzy circular patch around two-thirds as wide as the Moon.

Although Venus is brilliant at magnitude -3.9, it rises in the north-east around 40 minutes before the Sun and is unlikely to be noticed in Scotland’s dawn twilight. Mars is now as dim as magnitude 1.8 and becoming much harder to spot low down in our north-western evening twilight. Tracking eastwards in Gemini to pass below Castor and Pollux, it sets for Edinburgh at 00:05 BST on the 5th when it is 4° to the right of the slender young earthlit Moon. Mercury, much easier at magnitude -0.7, lies 11° below-right of Mars at that time and is 4° above the horizon one hour after sunset between the 5th and 19th. Mercury passes 0.2° above Mars on the 18th and stands furthest east of the Sun (25°) on the 24th.

Scotland’s noctilucent cloud season is just beginning and we can look forward to occasional displays of these “night-shining” clouds until August. Often with a bluish-white sheen, they may appear as wisps, streaks and whirls and merge into banks with cirrus-like herring-bone patterns. The clouds are formed when ice crystallises on dust particles in a narrow range of altitudes near 82 km. Here they are high enough to catch the sun’s light when our more typical lower-level terrestrial clouds are in darkness, from, say, one hour after sunset until one hour before sunrise. They rarely reach more than 20° above the horizon and favour directions towards the north-west at nightfall shifting to the north-east before dawn.

Diary for 2019 June

Times are BST

3rd           11h New moon

4th           17h Moon 4° S of Mercury

5th           16h Moon 1.6° S of Mars

7th           09h Moon 0.5° N of Praesepe

8th           21h Moon 3° N of Regulus

10th         07h First quarter

10th         16h Jupiter at opposition at distance of 641 million km

16th         20h Moon 2.0° N of Jupiter

17th         10h Full moon

18th         16h Mercury 0.2° N of Mars

19th         05h Moon 0.4° S of Saturn

21st          16:54 Summer solstice

24th         00h Mercury furthest E of Sun (25°)

25th         11h Last quarter

30th         17h Moon 2.3° N of Aldebaran

Alan Pickup

This is a slightly revised version, with added diary, of Alan’s article published in The Scotsman on May 31st 2019, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in November, 2017

Astronomers spot a mystery interstellar visitor

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 30th. (Click on map to enlarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 30th. (Click on map to enlarge)

Comets have always been of particular interest. Appearing without warning, and sometimes with impressive tails, it was not surprising that they were regarded as portents of battles to be won or lost and of the passing of kings.

It was in 1705 that Edmond Halley first published the orbit of the comet that now bears his name. This, and the more than 5,000 comets that have been studied since, have all proved to be members of our solar system.

Some, like Halley, follow closed elongated orbits, returning to perihelion in the Sun’s vicinity every few years. Many more, though, trace almost parabolic paths as they dive towards the Sun from the Oort cloud, a spherical reservoir of icy worlds at the edge of the Sun’s influence – if they ever return to perihelion it may not be for millions of years. A handful, though, receive a sufficient gravitational boost as they pass a planet that they are flung beyond the Oort cloud into interstellar space, never to return.

Now astronomers have sighted a faint object which appears to have originated far beyond the Oort cloud, perhaps as an escapee from another star. Discovered by the Pan-STARRS 1 telescope in Hawaii on 18 October, it had already reached its perihelion within 38 million km of the Sun nine days before and passed 24 million km from the Earth on the 14th. Dubbed at first Comet/2017 U1 (PanSTARRS) because of its highly eccentric comet-like orbit, its name was changed to A/2017 U1 on 25 October when observers failed to detect any trace of a tail or hazy coma surrounding its small nucleus, probably less than 200 metres wide. So, for the moment, it is classed as an asteroid.

Its path though is certainly hyperbolic, having entered the solar system at a relative speed of 26 km per second from a direction close to the bright star Vega in the constellation Lyra. This is also close to the direction that our solar system is moving at 20 km per second with regard to the stars around us, so it may be expected that interstellar intruders, be they comets or asteroids, are most likely to appear from this region. As our first known visitor from interstellar space, frantic efforts are underway to investigate its spectrum and nature before it recedes forever from view in the direction of the Square of Pegasus.

Vega, itself, is the brightest object very high in the south-west at nightfall, falling into the west by our star chart times as Pegasus and Andromeda occupy our high meridian. Orion is rising in the east below Taurus whose brightest star, Aldebaran, is occulted by the bright Moon on the morning of the 6th. Use a telescope to watch it slip behind the Moon’s lower-left limb between 02:27 and 03:26 as seen from Edinburgh

Our sole bright evening planet, Saturn at magnitude 0.5, is easy to miss as it hangs low in the south-west at nightfall, sinking to Edinburgh’s horizon at 18:40 on the 1st and by 16:58 on the 30th. We may need binoculars to spy it in the twilight 5° left of the young earthlit Moon on the 20th and 8° below-right of the Moon a day later. Mercury stands 22° east of the Sun on the 24th but is unlikely to be visible from our latitudes.

The other naked-eye planets are all in our predawn sky. Mars rises in the east just before 04:00 throughout November, climbing to stand 15° to 20° high in the south-east before its magnitude 1.8 pinprick is swallowed by the twilight. This month, it tracks 19° east-south-eastwards in Virgo to pass 3° north of Virgo’s leading star Spica on the 28th. Mars stands to the right of the waning Moon on the 15th when a telescope show it as only 4 arcseconds wide – too small to see any detail.

Venus continues as a brilliant morning star of magnitude -3.9, but it stands lower each morning as it approaches the Sun’s far side. Currently above and left of Spica but speeding east-south-eastwards into Libra, it rises a little more than two hours before the Sun on the 1st and one hour before sunrise by the 30th.

Jupiter, about to emerge from the Sun’s glare below-left of Venus, climbs to pass a mere 16 arcminutes, or half the Moon’s diameter, below-right of Venus on the 13th. Conspicuous at magnitude -1.7, the Jovian disk appears 31 arcseconds wide as compared with only 10 arcseconds for Venus. On the 17th, the incredibly slim earthlit Moon lies above-left of Venus and to the left of Jupiter while the later stands 18° above-right of Venus by the 30th.

Sunrise/sunset times for Edinburgh change from 07:20/16:32 on the 1st to 08:18/15:45 on the 30th. The Moon is full on the 4th, at last quarter on the 10th, new on the 18th and at first quarter on the 26.

The annual Leonids meteor shower lasts from the 15th to the 20th and peaks on the night of the 17th-18th. Its meteors, all of them very fast and many leaving glowing trains in their wake, emanate from the Sickle, the reversed question-mark of stars above Regulus in Leo. This rises in the north-east at 22:00, with most Leonids visible during the predawn hours as it climbs through our eastern sky. The shower has given some spectacular meteor storms in the past, notably in 1966 and 1999, but the parent comet, Comet Tempel-Tuttle, is now near the farthest point of its orbit and rates may be around a dozen meteors per hour. For once, though, moonlight is no hindrance.

Alan Pickup

This is a slightly revised version of Alan’s article published in The Scotsman on October 31st 2017, with thanks to the newspaper for permission to republish here.