Blog Archives
Scotland’s Sky in October, 2019
Amateur astronomer discovers first interstellar comet

The maps show the sky at 23:00 BST on the 1st, 22:00 BST (21:00 GMT) on the 16th and at 20:00 GMT on the 31st. Summer time ends at 02:00 BST on the 27th when clocks are set back one hour to 01:00 GMT. (Click on map to enlarge)
It is two years since astronomers in Hawaii discovered the first object known to have approached the Sun from beyond our solar system. Given the Hawaiian name of ʻOumuamua, this appeared to be a reddish and elongated slab-shaped body of about the size of a skyscraper that passed 38 million km from the Sun before sweeping within 24 million km of the Earth. It came from roughly the current direction of the star Vega and headed away towards the Square of Pegasus, though it may take 20,000 years to leave the solar system completely.
Its small size meant that it was followed only faintly and for barely a month. Astronomers were surprised to notice no sign of cometary activity – no surrounding fuzzy coma and no tail – while suggestions that it was an alien probe prompted unsuccessful scans for any artificial radio emissions.
Now the second-known interstellar intruder has been sighted, and this one appears larger, brighter and is surely a comet. It was discovered photographically on 29 August from an observatory in Crimea by the amateur astronomer Gennady Borisov using a telescope he built himself. Initially called C/2019 Q4 (Borisov), or Comet Borisov for short, it was clearly speeding along a strongly hyperbolic path past the Sun, very unlike the elliptical or nearly parabolic orbits followed by all previous comets. Now it has been awarded the official interstellar designation of 2I/Borisov.
The comet was travelling at about 33 km per second as it entered the solar system from the direction of the constellation Cassiopeia, fast enough to cover the 4-light-years distance of the nearest star in under 40,000 years. Perihelion, its closest point to the Sun, occurs at 303 million km on 8 December, putting it still beyond the orbit of Mars, and it reaches its closest to the Earth at 293 million km twenty days later.
It is still faint, no better than magnitude 17, but may attain magnitude 14 near perihelion and, while it will never reach naked-eye or binocular visibility, is likely to be within telescopic range until at least the middle of next year. This gives plenty of time for astronomers to study a comet that probably formed elsewhere in the Milky Way galaxy at a different time and with possibly a different composition than those that formed alongside the Sun and Earth. October has Comet Borisov travelling south-eastwards to the west of the Sickle of Leo and passing within a Moon’s-breadth east of the star Regulus on the 24th.
Leo’s Sickle rises in the north-east in the early morning and stands some 30° high in the east before dawn as our southern sky is dominated by the glorious constellation of Orion. The pre-dawn also gives us a chance to spot Mars as it emerges from the Sun’s far side. The planet rises in the east one hour before the Sun on the 1st and two hours before sunrise on the 31st. Moving east-south-eastwards in Virgo, it shines only at magnitude 1.8 and lies 8° below the slender earthlit Moon on the 26th.
As the Sun tracks southwards by 11° during October, the sky at nightfall is changing only slowly. The Summer Triangle is still high in the south as darkness falls, although its three stars, Vega in Lyra, Deneb in Cygnus and Altair in Aquila, have shifted into the west by our star map times. By then, Pegasus, the upside-down flying horse with his nose near Delphinus the Dolphin, stands high in the south.
The sunrise/sunset times for Edinburgh change this month from 07:15/18:49 BST (06:15/17:49 GMT) on the 1st to 07:17/16:35 GMT on the 31st, following Summer Time’s end on the 27th. The Moon reaches first quarter on the 5th, full phase on the 13th, last quarter on the 21st and new on the 28th.
Like Mars, Venus is also coming into view from beyond the Sun, but this time into our evening twilight in the west-south-west. Although brilliant at magnitude -3.9, it stands a mere 3° high at sunset for Edinburgh and sets at present only 30 minutes later, so we need good weather and a clear horizon to catch it. On the 29th, look for it 2.8° below the sliver of the earthlit young Moon, only 3° illuminated. Mercury is fainter and even lower at sunset and not visible from Scotland.
Jupiter is well past its best as an evening object although it remains obvious low in the south-west at nightfall, sinking to set at Edinburgh’s south-western horizon at 21:14 BST on the 1st and as early as 18:34 GMT by the 31st. At magnitude -2.0 to -1.9 and 36 to 33 arcseconds in diameter, it lies close to the Moon on the 3rd and 31st.
Saturn, one tenth as bright at magnitude 0.5 to 0.6, lies some 25° to the left of Jupiter. When it is close to the first quarter Moon on the 5th, its disk and rings span 17 and 38 arcseconds respectively. It is in Sagittarius low in the south at nightfall and sets in the south-west soon after our map times.
Neptune and Uranus are binocular brightness object of magnitudes 7.8 and 5.7 in Aquarius and Pisces respectively. There is little hope of locating them using our chart, but a web search, such as “Where is Uranus?”, should bring up information and a finder chart. Uranus, in fact, reaches opposition at a distance of 2,817 million km on the 28th when it stands directly opposite the Sun and appears as a tiny 3.7 arcseconds blue-green disk through a telescope.
Our Diary, below, records the peak dates for two of the October’s meteor showers, the Draconids on the 8th and the Orionids on the 22nd. Neither is among the year’s top showers, though both can yield rates of 20 or more meteors per hour under ideal conditions. The Draconids are active from the 6th to the 10th with slow meteors that diverge from a radiant near the Head of Draco, the quadrilateral of stars below and left of the D of DRACO on our north map. Unfortunately, the light of the bright gibbous Moon will hinder observations before the Moon sets in the early morning.
The Orionids, like May’s Eta Aquarids shower, are caused by meteoroid debris from Comet Halley. They last throughout the month and into early November but are expected to be most prolific on the nights of the 22nd and 23rd when their fast meteors diverge from a point that lies around 10° north-east (above-right) of Betelgeuse at Orion’s shoulder. That point passes high in the south before dawn but is just rising in the east-north-east at our map times, so no Orionids appear before then. As with those other swift meteors, the Perseids of August, many of the brighter Orionids leave glowing trains in their wake.
Diary for 2019 October
Times are BST until the 27th and GMT thereafter.
3rd 21h Moon 1.9° N of Jupiter
5th 18h First quarter
5th 22h Moon 0.3° S of Saturn
8th 07h Peak of Draconids meteor shower
13th 22h Full moon
17th 23h Moon 2.9° N of Aldebaran
20th 05h Mercury furthest E of Sun (25°)
21st 14h Last quarter
22nd Peak of Orionids meteor shower
22nd 06h Moon 1.0° N of Praesepe
23rd 19h Moon 3° N of Regulus
26th 18h Moon 5° N of Mars
27th 02h BST = 01h GMT End of British Summer Time
28th 04h New moon
28th 08h Uranus at opposition at distance of 2,817 million km
29th 14h Moon 4° N of Venus
30th 08h Mercury 2.7° S of Venus
31st 14h Moon 1.3° N of Jupiter
Alan Pickup
This is an extended version, with added diary, of Alan’s article published in The Scotsman on September 30th 2019, with thanks to the newspaper for permission to republish here.
Scotland’s Sky in March, 2019
Watch earth satellites transit our vernal equinox sky

The maps show the sky at 23.00 GMT on the 1st, 22.00 GMT on the 16th and 21.00 GMT (22.00 BST) on the 31st. Summer time begins at 01.00 GMT on the 31st when clocks go forward one hour to 02.00 BST. An arrow depicts the motion of Mars from the 7th. (Click on map to enlarge)
The Sun climbs northwards at its fastest for the year in March and crosses the sky’s equator at 21:58 on the 20th, the time of our vernal or spring equinox. As the days lengthen rapidly, the stars in the evening sky appear to drift sharply westwards so that Orion, which is astride the meridian as the night begins on the 1st, stands 45° over in the south-west by nightfall on the 31st.
Another consequence of the Sun’s motion is that the Earth’s shadow, on the night side of the planet, is tilting increasingly southwards so that it no longer reaches so far above Scotland at midnight. Indeed, by the end of March the shadow is shallow enough that satellites passing a few hundred kilometres above our heads may be illuminated by the Sun at any time of night. This allows them to appear as moving points of light against the stars as they take a few minutes to cross the sky. Some are steady in brightness while others pulsate or flash as they tumble or spin in orbit.
Dozens of satellites are naked-eye-visible every night, while many times this number may be glimpsed through binoculars. Predictions of when and where to look, including plots of their tracks against the stars, may be obtained online for free, or example from heavens-above.com, or via smartphone apps. Of particular interest are the so-called Iridium satellites which can outshine every other object in the sky, bar the Sun and Moon, during brief flares when their orientation to the Sun and the observer is just right. Although online predictions also include these, Iridium flares are falling rapidly in frequency since the satellites responsible are being deorbited as they are replaced by 2nd generation (and non-flaring) craft.
The most obvious steadily-shining satellite is, of course, the International Space Station which can outshine Sirius as it transits up to 40° high from west to east across Edinburgh’s southern sky. As it orbits the Earth every 93 minutes at a height near 405 km, it is visible before dawn until about the 15th and begins a series of evening passes a week later.
Sunrise/sunset times for Edinburgh change from 07:05/17:46 GMT on the 1st to 05:47/18:48 GMT (06:47/19:48 BST) on the 31st which is the day that we set our clocks to British Summer Time.
The Moon is new on the 6th and spectacular over the following days as its brightly earthlit crescent stands higher each evening in the west-south-west. Catch the Moon 12° below Mars on the 10th and 6° below and left of the planet on the 11th. Mars itself stands around 30° high in the west-south-west at nightfall and is well to the north of west when it sets before midnight. This month it dims from magnitude 1.2 to 1.4 as it speeds more than 20° north-eastwards from Aries into Taurus to end the period only 3° below-left of the Pleiades.
Mercury has been enjoying its best spell of evening visibility this year, but is now fading rapidly and may be lost from view by the 7th. Binoculars show it shining at magnitude 0.1 on the 1st as it stands 10° directly above the sunset position forty minutes after sunset.
The Moon and planets never stray far from the ecliptic, the line around the sky that traces the apparent path of the Sun during our Earth’s orbit. The ecliptic slants steeply across our south-west at nightfall towards the Sun’s most northerly point which it reaches to the north of Orion at our summer solstice in June.
Given a clear dark evening, this is the best time of year to spy a broad cone of light stretching along the ecliptic from the last of the fading twilight. Dubbed the zodiacal light, this glow comes from sunlight scattering from interplanetary dust particles and was the subject on which Brian May, the lead guitarist of Queen, gained his doctorate.
As the Moon continues around the sky, it reaches first quarter on the 14th and passes just north of the star Regulus in Leo on the night of the 18/19th. Regulus, 45° high on Edinburgh’s meridian at our map times, lies less than a Moon’s breadth above the ecliptic and marks the handle of the Sickle of Leo.
Algieba in the Sickle is a splendid binary whose contrasting orange and yellow component stars lie 4.7 arcseconds apart and may be separated telescopically as they orbit each other every 510 years or so. The larger of the pair has at least one companion which may be a planet much larger than Jupiter or, perhaps, a brown dwarf star.
Between full moon on the 21st and last quarter on the 28th, the Moon passes very close to the conspicuous planet Jupiter on the 27th. The giant planet rises in the south-east in the small hours and is unmistakable at magnitude -2.0 to -2.2 low in the south before dawn where it is creeping eastwards against the stars of southern Ophiuchus.
The red supergiant star Antares in Scorpius lies some 13° to the right of Jupiter while Saturn, fainter at magnitude 0.6, is twice this distance to Jupiter’s left and lower in the twilight. Look for Saturn to the Moon’s left on the 1st and just above the Moon on the 29th.
Venus is brilliant (magnitude -4.1) but becoming hard to spot very low down in our morning twilight. More than 10° to the left of Saturn as the month begins and rushing further away, it rises in the south-east 81 minutes before sunrise tomorrow and only 39 minutes before on the 31st.
Diary for 2019 March
1st 18h Moon 0.3° N of Saturn
2nd 21h Moon 1.2° S of Venus
6th 16h New moon
7th 01h Neptune in conjunction with Sun
11th 12h Moon 6° S of Mars
13th 11h Moon 1.9° N of Aldebaran
14th 10h First quarter
15th 02h Mercury in inferior conjunction
17th 13h Moon 0.1° S of Praesepe
19th 00h Moon 2.6° N of Regulus
20th 21:58 Vernal equinox
21st 02h Full moon
27th 02h Moon 1.9° N of Jupiter
28th 04h Last quarter
29th 05h Moon 0.1° S of Saturn
30th 10h Mars 3° S of Pleiades
31st 01h GMT = 02h BST Start of British Summer Time
Alan Pickup
This is a slightly revised version, with added diary, of Alan’s article published in The Scotsman on February 28th 2019, with thanks to the newspaper for permission to republish here.
Scotland’s Sky in November, 2016
Nights begin with Venus and end at Jupiter

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 30th. An arrow depicts the motion of Mars after the first week of the month. (Click on map to enlarge)
The end of British Summer Time means that we now enjoy six hours of official darkness before midnight, though I appreciate that this may not be welcomed by everyone. The starry sky as darkness falls, however, sees only a small shift since a month ago, with the Summer Triangle, formed by the bright stars Vega, Deneb and Altair, now just west of the meridian and toppling into the middle of the western sky by our star map times.
Those maps show the Square of Pegasus high in the south. The star at its top-left, Alpheratz, actually belongs to Andromeda whose other main stars, Mirach and Almach, are nearly equal in brightness and stand level to its left. A spur of two stars above Mirach leads to the oval glow of the Andromeda Galaxy, M31, which is larger than our Milky Way and, at 2.5 million light years, is the most distant object visible to the unaided eye. It is also approaching us at 225 km per second and due to collide with the Milky Way in some 4 billion years’ time.
Binoculars show M31 easily and you will also need them to glimpse more than a handful of stars inside the boundaries of the Square of Pegasus, even under the darkest of skies. In fact, there are only four such stars brighter than the fifth magnitude and another nine to the sixth magnitude, close to the naked eye limit under good conditions. How many can you count?
Mars is the easiest of three bright planets to spot in tonight’s evening sky. As seen from Edinburgh, it stands 11° high in the south as the twilight fades, shining with its customary reddish hue at a magnitude of 0.4, and appearing about half as bright as the star Altair in Aquila, 32° directly above it.
Now moving east-north-eastwards (to the left), Mars is 5° below-right of the Moon on the 6th and crosses from Sagittarius into Capricornus two days later. Soon after this, it enters the region covered by our southern star map, its motion being shown by the arrow. By the 30th, Mars has dimmed slightly to magnitude 0.6 but is almost 6° higher in the south at nightfall, moving to set in the west-south-west at 21:00. It is a disappointingly small telescopic sight, though, its disk shrinking from only 7.5 to 6.5 arcseconds in diameter as it recedes from 188 million to 215 million km.
We need a clear south-western horizon to spy Venus and Saturn, both low down in our early evening twilight. Venus, by far the brighter at magnitude -4.0, is less than 4° high in the south-west thirty minutes after sunset, while Saturn is 4° above and to its right, very much fainter at magnitude 0.6 and only visible through binoculars. The young earthlit Moon may help to locate them – it stands 3° above-right of Saturn on the 2nd and 8° above-left of Venus on the 3rd.
Mercury is out of sight in the evening twilight and Saturn will soon join it as it tracks towards the Sun’s far side. However, Venus’ altitude thirty minutes after sunset improves to 9° by the 30th when it sets for Edinburgh at 18:30 and is a little brighter at magnitude -4.1. Viewed telescopically, Venus shows a dazzling gibbous disk that swells from 14 to 17 arcseconds as its distance falls from 178 million to 149 million km.
Sunrise/sunset times for Edinburgh change from 07:20/16:31 on the 1st to 08:18/15:44 on the 30th. The Moon reaches first quarter on the 7th, full on the 14th, last quarter on the 21 and new on the 28th.
The full moon on the 14th occurs only three hours after the Moon reaches its perigee, the closest point to the Earth in its monthly orbit. As such, this is classed as a supermoon because the full moon appears slightly (7%) wider than it does on average. By my reckoning, this particular lunar perigee, at a distance of 356,509 km, is the closest since 1948 when it also coincided with a supermoon.
Of the other planets, Neptune and Uranus continue as binocular-brightness objects in Aquarius and Pisces respectively in our southern evening sky, while Jupiter, second only to Venus in brightness, is now obvious in the pre-dawn.
Jupiter rises at Edinburgh’s eastern horizon at 04:28 on the 1st and stands more than 15° high in the south-east as morning twilight floods the sky. It outshines every star as it improves from magnitude -1.7 to -1.8 by the 30th when it rises at 03:07 and is almost twice as high in the south-south-east before dawn.
Currently close to the famous double star Porrima in Virgo, Jupiter is 13° above-right of Virgo’s leader Spica and draws 5° closer during the period. Catch it less than 3° to the right of the waning earthlit Moon on the 25th. Jupiter’s distance falls from 944 million to 898 million km during November while its cloud-banded disk is some 32 arcseconds across.
The annual Leonids meteor shower has produced some stunning storms of super-swift meteors in the past, but probably not this year. Active from the 15th to 20th, it is expected to peak at 04:00 on the 17th but with no more than 20 meteors per hour under a dark sky. In fact, the bright moonlight is likely to swamp all but the brightest of these this year. Leonids diverge from a radiant point that lies within the Sickle of Leo which climbs from low in the east-north-east at midnight to pass high in the south before dawn.
Alan Pickup
This is a slightly-revised version of Alan’s article published in The Scotsman on November 1st 2016, with thanks to the newspaper for permission to republish here.
Scotland’s Sky in March, 2016
Jupiter conspicuous at opposition in Leo

The maps show the sky at 23.00 GMT on the 1st, 22.00 GMT on the 16th and 21.00 GMT (22.00 BST) on the 31st. An arrow shows the motion of Jupiter. Summer time begins at 01.00 GMT on the 27th when clocks go forward one hour to 02.00 BST. (Click on map to enlarge)
The Sun, now climbing northwards at its fastest pace for the year, crosses the equator of the sky at 04:30 GMT on the 20th, the time of our vernal equinox. It then rises due east and sets due west, and days and night are equal in length around the globe.
The Sun’s progress means that our nights are falling rapidly later, an effect that appears to enjoy a step-change when we set our clocks forward to British Summer Time on the 27th, though, in this instance, the daylight we gain in the evening is lost in the morning. It is noticeable, too, that the stars at nightfall are shifting quickly to the west. Orion, for example, dominates in the south as darkness falls at present, but has tumbled well over into the south-west by the month’s end.
The Plough is nearing the zenith at our map times and it is the squat figure of Leo the Lion and the prominent planet Jupiter that dominate our southern sky. Jupiter is edging westwards beneath Leo’s hindquarters and passes just below the fourth magnitude star Sigma Leonis over the first few days of the month. Above and to its left is Denebola, the Lion’s tail, while further west (right) is Leo’s leading star Regulus in the handle of the Sickle. Algieba (see chart) appears as a glorious double star through a telescope.
Jupiter comes to opposition on the 8th when it stands opposite the Sun so that it rises in the east at sunset and is unmistakable as it climbs through our south-eastern evening sky to pass 40° high on Edinburgh’s meridian in the middle of the night. Eleven times wider than the Earth and yet with a day lasting under ten hours, it is 664 million km distant at opposition and shines at magnitude -2.5, more than twice as bright as any star other than the Sun.
View Jupiter through binoculars or a telescope, and the fun really begins. Binoculars show its four main moons, Io, Europa, Ganymede and Callisto, which change their relative positions to east and west of the planet’s disk from night to night as they orbit almost directly above the equator. Were it not for Jupiter’s glare, we could see all four of these with the naked eye.
With numerous sulphurous volcanoes, Io is the most geologically active body we know, while Europa is the only one of the four to be smaller than our Moon and is thought to harbour a deep ocean of water beneath its icy crust. This makes it so irresistible as a potential home for life that the US Congress has urged NASA to add a lander craft to a planned mission to Europa over the next decade.
The Jovian disk appears 44 arcseconds wide when we view it through a telescope at present. Even a small telescope shows its main cloud belts but the smaller cloud features that indicate Jupiter’s rotation are more of a challenge. The famous Great Red Spot in the southern hemisphere is a storm that has raged for at least 185 years but is now shrinking noticeably.
By the time Jupiter is sinking in the west before dawn, the two brightest objects low in the south are Mars and Saturn. Mars stands 18° to the right of Saturn and is slightly the brighter of the two at present – their magnitudes being 0.3 and 0.5 respectively, with both of them outshining the red supergiant star Antares in Scorpius which lies more than 5° lower and between them. The Moon stands above-left of Mars on the 1st, above Saturn on the 2nd, and above and between them both on the 29th.
This month Saturn improves only slightly to magnitude 0.4 and hardly moves in southern Ophiuchus, being stationary in position on the 25th. Mars, tracking eastwards from Libra to Scorpius, more than doubles in brightness to magnitude -0.5 as it approaches from 161 million to 118 million km. It also swells in diameter from 9 to 12 arcseconds and telescopes are starting to show surface features, including its north polar cap. There is no comparison, though, with the beauty of Saturn whose superb rings have their north face tipped Earthwards at 26°, near their maximum tilt, and stretch across 38 arcseconds. Saturn’s disk is 17 arcseconds wide and has much more subdued cloud belts than Jupiter.
Although Venus is brilliant at magnitude -3.9, we have slim hopes of seeing it deep in our south-eastern twilight for just a few more mornings. Mercury, already lost from view, reaches superior conjunction on the Sun’s far side on the 23rd.
The sunrise/sunset times for Edinburgh change from 07:03/17:48 GMT on the 1st to 06:45/19:50 BST (05:45/18:50 GMT) on the 31st. The Moon is at last quarter on the 1st, new on the 9th, at first quarter on the 15th, full on the 23rd and at last quarter again on the 31st.
New moon on the 9th brings the first and best of this year’s four eclipses when a total eclipse of the Sun occurs along a path that travels eastwards across Indonesia before swinging north-eastwards over the Pacific to end to the north of Hawaii. Surrounding areas enjoy a partial eclipse but there is nothing to see from Europe. The Moon slims the outer and lighter shadow of the Earth during a penumbral lunar eclipse on the 23rd. Also best seen over the Pacific, it is partly visible from most of the Americas and eastern Asia, but only a minor fading of the southern part of the Moon may be expected.
Alan Pickup
This is a slightly-revised version of Alan’s article published in The Scotsman on March 1st 2016, with thanks to the newspaper for permission to republish here. Journal Editor’s apologies for the lateness of the article appearing here.
Scotland’s Sky in November, 2015
November nights end with planets on parade

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 30th. (Click on map to englarge)
With the return of earlier and longer nights, astronomy enthusiasts have plenty to observe in November. As in October, though, the real highlight is the parade of bright planets in our eastern morning sky.
The first to appear is Jupiter which rises above Edinburgh’s eastern horizon at 02:04 GMT on the 1st and by 00:35 on the 30th. More conspicuous than any star, it brightens from magnitude -1.8 to -2.0 this month as it moves 4° eastwards in south-eastern Leo. It lies 882 million km away and appears 33 arcseconds wide through a telescope when it stands 4° to the left of the waning Moon on the 6th.
Following close behind Jupiter at present is the even more brilliant Venus. This rises 34 minutes after Jupiter on the 1st and stands 5° below and to its left as they climb 30° into the south-east before dawn. In fact, the two were only 1° apart in a spectacular conjunction on the morning of October 26 and Venus enjoys an even closer meeting with the planet Mars over the first few days of November.
On the 1st, Venus blazes at magnitude -4.3 and lies 1.1° to the right of Mars, some 250 times fainter at magnitude 1.7. The pair are closest on the 3rd, with Venus only 0.7° (less than two Moon-breadths) below-right of Mars, before Venus races down and to Mars’ left as the morning star sweeps east-south-eastwards through the constellation Virgo. Catch Mars and Venus 2° apart on the 7th as they form a neat triangle with the Moon, a triangle that contains Virgo’s star Zavijava.
Venus lies only 4 arcminutes above-left of the star Zaniah on the 13th, and 1.1° below-left of Porrima on the 18th. The final morning of the month finds it 4° above-left of Virgo’s leading star Spica. By then Mars is 14° above and to the right of Venus and 1.3° below-right of Porrima, while Jupiter is another 19° higher and to their right.
Venus dims slightly to magnitude -4.2 during November, its gibbous disk shrinking as seen through a telescope from 23 to 18 arcseconds as its distance grows from 110 million to 142 million km. Mars improves to magnitude 1.5 and is only 4 arcseconds wide as it approaches from 329 million to 296 million km.
Neither Mercury nor Saturn are observable during November as they reach conjunction on the Sun’s far side on the 17th and 30th respectively.
More than 15° above and to the right of Jupiter is Leo’s leading star Regulus, while curling like a reversed question-mark above this is the Sickle of Leo from which meteors of the Leonids shower diverge between the 15th and 20th. The fastest meteors we see, these streak in all parts of the sky and are expected to be most numerous, albeit with rates of under 20 per hour, during the morning hours of the 18th.
The Sun plunges another 7.5° southwards during November as sunrise/sunset times for Edinburgh change from 07:19/16:33 GMT on the 1st to 08:18/15:44 on the 30th. The Moon is at last quarter on the 3rd, new on the 11th, at first quarter on the 19th and full on the 25th.
As the last of the evening twilight fades in early November, the Summer Triangle formed by bright stars Vega, Deneb and Altair fills our high southern sky. By our star map time of 21:00 GMT, the Triangle has toppled into the west to be intersected by the semicircular border of both charts – the line that arches overhead from east to west and separates the northern half of our sky from the southern.
The maps show the Plough in the north as it turns counterclockwise below Polaris, the Pole Star, while Cassiopeia passes overhead and Orion rises in the east.
The Square of Pegasus is high in the south with Andromeda stretching to its left as quintet of watery constellations arc across our southern sky below them. These are Capricornus the Sea Goat, Aquarius the Water Bearer, Pisces the (Two) Fish, Cetus the Water Monster and Eridanus the River.
One of Pisces’ fish lies to the south of Mirach and is joined by a cord to another depicted by a loop of stars dubbed the Circlet below the Square. Like the rest of Pisces, they are dim and easily swamped by moonlight or street-lighting. Just to the left of the Circlet, one of the reddest stars known is visible easily though binoculars. TX Piscium is a giant star some 760 light years away and has a surface temperature of perhaps 3,200C compared with our Sun’s 5,500C.
Omega Piscium, to the left of the Circlet, is notable because it sits only two arcminutes east of the zero-degree longitude line in the sky – making it one of the closest naked-eye stars to the celestial equivalent of our Greenwich Meridian. The celestial counterparts of latitude and longitude are called declination and right ascension. Declination is measured northwards from the sky’s equator while right ascension is measured eastwards from the point at which the Sun crosses northwards over the equator at the vernal equinox.
That point lies 7° to the south of Omega but drifts slowly westwards as the Earth’s axis wobbles over a period of 26,000 years – the effect known as precession.
Below Pisces lies Cetus, the mythological beast from which Perseus rescued Andromeda. Its brightest stars, Menkar and Deneb Kaitos, are both orange-red giants, the latter almost identical in brightness to Polaris at magnitude 2.0. Another, Mira, takes 11 months to pulsate between naked-eye and telescopic visibility and is currently near its minimum brightness.
Alan Pickup