Blog Archives

Scotland’s Sky in August, 2017

Countdown to the Great American Eclipse

The maps show the sky at 00:00 BST on the 1st, 23:00 on the 16th and 22:00 on the 31st. (Click on map to enlarge)

The maps show the sky at 00:00 BST on the 1st, 23:00 on the 16th and 22:00 on the 31st. (Click on map to enlarge)

With two eclipses and a major meteor display, August is 2017’s most interesting month for sky-watchers. Admittedly, Scotland is on the fringe of visibility for both eclipses while the annual Perseids meteor shower suffers moonlight interference.

The undoubted highlight is the so-called Great American Eclipse on the 21st. This eclipse of the Sun is total along a path, no more than 115km wide, that sweeps across the USA from Oregon at 18:17 BST (10:17 PDT) to South Carolina at 19:48 BST (14:48 EDT) – the first such coast-to-coast eclipse for 99 years.

Totality is visible only from within this path as the Moon hides completely the dazzling solar surface, allowing ruddy flame-like prominences to be glimpsed at the solar limb and the pearly corona, the Sun’s outer atmosphere, to be admired at it reaches out into space. At its longest, though, totality lasts for only 2 minutes and 40 seconds so many of those people fiddling with their gadgets to take selfies and the like may be in danger of missing the spectacle altogether.

The surrounding area from which a partial eclipse is visible even extends as far as Scotland. From Edinburgh, this lasts from 19:38 to 20:18 BST but, at most, only the lower 2% of the Sun is hidden at 19:58 as it hangs a mere 4° high in the west. Need I add that the danger of eye damage means that we must never look directly at the Sun – instead project the Sun through a pinhole, binoculars or a small ‘scope, or use an appropriate filter or “eclipse glasses”.

A partial lunar eclipse occurs over the Indian Ocean on the 7th as the southern quarter of the Moon passes through the edge of the Earth’s central dark umbral shadow between 18:23 and 20:18 BST. By the time the Moon rises for Edinburgh at 20:57, it is on its way to leaving the lighter penumbral shadow and I doubt whether we will see any dimming, It exits the penumbra at 21:51.

Our charts show the two halves of the sky around midnight at present. In the north-west is the familiar shape of the Plough while the bright stars Deneb in Cygnus and Vega in Lyra lie to the south-east and south-west of the zenith respectively. These, together with Altair in Aquila in the middle of our southern sky, make up the Summer Triangle. The Milky Way flows through the Triangle as it arches overhead from the south-west to the north-east where Capella in Auriga rivals Vega in brightness.

Of course, many of us have to contend with light pollution which swamps all trace of the Milky Way and we are not helped by moonlight which peaks when the Moon is full on the 7th and only subsides as last quarter approaches on the 15th. New moon comes on the 21st and first quarter on the 29th. The Sun, meantime, slips another 8° southwards during the month as sunrise/sunset times for Edinburgh change from 05:17/21:20 BST on the 1st to 06:15/20:09 on the 31st.

Meteors of the annual Perseids shower, the tears of St Lawrence, are already arriving in low numbers. They stream away from a radiant point in the northern Perseus which stands in the north-east at our map times, between Capella and the W-pattern of Cassiopeia. We spot Perseids in all parts of the sky, though, and not just around Perseus.

Meteor numbers are expected to swell to a peak on the evening of the 12th when upwards of 80 per hour might be counted under ideal conditions. Even though moonlight will depress the numbers seen this time, we can expect the brighter ones still to impress as they disintegrate in the upper atmosphere at 59 km per second, many leaving glowing trains in their wake. The meteoroids concerned come from Comet Swift-Tuttle which last approached the Sun in 1992.

Although Neptune is dimly visible through binoculars at magnitude 7.8 some 2° east of the star Lambda Aquarii, the only naked-eye planet at our map times is Saturn. The latter shines at magnitude 0.3 to 0.4 low down in the south-west as it sinks to set less than two hours later. It is a little higher towards the south at nightfall, though, where it lies below-left of the Moon on the 2nd when a telescope shows its disk to be 18 arcseconds wide and its stunning wide-open rings to span 40 arcseconds. Saturn is near the Moon again on the 29th.

Jupiter is bright (magnitude -1.9 to -1.7) but very low in our western evening sky, its altitude one hour after sunset sinking from 6° on the 1st to only 1° by the month’s end as it disappears into the twilight. Catch it just below and right of the young Moon on the 25th.

Venus is brilliant at magnitude -4.0 in the east before dawn. Rising in the north-east a little after 02:00 BST at present, and an hour later by the 31st, it climbs to stand 25° high at sunrise. Viewed through a telescope, its disk shrinks from 15 to 12 arcseconds in diameter as it recedes from 172 million to 200 million km and its gibbous phase changes from 74% to 83% sunlit.

As Venus tracks eastwards through Gemini, it passes below-right of the star cluster M35 (use binoculars) on the 2nd and 3rd, stands above-left of the waning earthlit Moon on the 19th and around 10° below Castor and Pollux as it enters Cancer a few days later. On the 31st it stands 2° to the right of another cluster, M44, which is also known as Praesepe or the Beehive.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on July 31st 2017, with thanks to the newspaper for permission to republish here.
Advertisements

Scotland’s Sky in April, 2017

Jupiter rules our April nights

The maps show the sky at midnight BST on the 1st, 23:00 on the 16th and 22:00 on 30th. An arrow shows the motion of Mars during the final week of the month. (Click on map to enlarge)

The maps show the sky at midnight BST on the 1st, 23:00 on the 16th and 22:00 on 30th. An arrow shows the motion of Mars during the final week of the month. (Click on map to enlarge)

Venus dominated our evening sky for the first quarter of 2017, but it is now Jupiter’s turn in the spotlight. The conspicuous giant planet lies directly opposite the Sun in the sky on the 7th so that it rises in the east at sunset, reaches its highest point in the south in the middle of the night and sets in the west at sunrise.

Our charts show it in Virgo to the east of south as Taurus and Orion dip beneath the western horizon and the Plough looms overhead, stretched out of its familiar shape by our map projection. Regulus in Leo is in the south-west and almost level with Arcturus in Bootes in the south-east. Vega in Lyra and Deneb in Cygnus are beginning their climb in the north-east.

Sunrise/sunset times for Edinburgh change from 06:43/19:51 BST on the 1st to 05:31/20:50 on the 30th. The Moon is at first quarter on the 3rd, full on the 11th, at last quarter on the 19th and new on the 26th.

Venus rises only a little more than one hour before sunrise and, though brilliant at magnitude -4.2, may be difficult to spot low in the east before dawn. However, the other inner planet, Mercury, remains nicely placed in the evening and stands furthest east of the Sun (19°) on the 1st.

Thirty minutes after Edinburgh’s sunset on that day, Mercury is 12° high in the west and shines at magnitude 0.0. It should be possible to spy it through binoculars and eventually with the unaided eye as the twilight fades and the planet sinks to set another 96 minutes later. By the 8th, though, it is a couple of degrees lower and a quarter as bright at magnitude 1.6 as it is engulfed by the twilight. Inferior conjunction on the Sun’s near side occurs on the 20th.

Mars, magnitude 1.5 to 1.6 and above and to Mercury’s left at present, tracks east-north-eastwards this month to pass 5° below the Pleiades on the 15th and a similar distance left of the star cluster on the 26th. By then it sets late enough to be plotted near our north-western horizon at the star map times.

Its opposition means that Jupiter is at its brightest and closest, shining more brightly than any star at magnitude -2.5 and a distance of 666 million km. It lies 6° north-west (above-right) of Virgo’s leading star Spica as the month begins and tracks 3.7° westwards during April to pass 10 arcminutes or a third of a Moon’s-width south of the fourth magnitude star Theta Virginis on the 5th.

Jupiter lies close to the full Moon on the night of the 10th-11th when the Jovian disk appears 44 arcseconds wide if viewed telescopically, one fortieth as wide as the Moon.

Jupiter’s clouds are arrayed in bands that lie parallel to its equator, the dark ones called belts and the intervening lighter hued ones called zones. There are numerous whirls and spots, the most famous being the Great Red Spot in the southern hemisphere. The planet spins in under ten hours, so a resolute observer might view the entire span of its clouds in a single April night. The four main moons, visible through decent binoculars and easy through a telescope, lie on each side of the disk and change their configuration from night to night.

The beautiful planet Saturn rises in the south-east less than three hours after our map times and is the brightest object (magnitude 0.4 to 0.3) less than 15° above Edinburgh’s southern horizon before dawn. It is a shame that its low altitude means that we miss the sharpest and most impressive views of it rings which span 39 arcseconds in mid-April, and are tilted at 26° around its 17 arcseconds disk. After appearing stationary on the 6th, Saturn begins to creep westwards against the stars of Sagittarius – look for it below and left of the Moon on the 16th and right of the Moon on the 17th.

It is not often that I advertise the annual Lyrids meteor shower. As one of the year’s lesser displays, it yields only some 18 meteors per hour at best, all of them swift and some leaving glowing trains in their wake as they diverge from a radiant point to the right of Vega. The event lasts from the 18th to the 25th and peaks on the 22nd when moonlight should not interfere unduly this year. The Lyrid meteoroids were released by Comet Thatcher, last seen in 1861.

Bright comets have been rare of late, but fainter ones are observed frequently. One such has the jaunty name of comet 41P/Tuttle–Giacobini–Kresák and takes 5.4 years to orbit between the paths of Jupiter and the Earth. It passes within 21 million km of us on the 1st as it nears perihelion, its closest point to the Sun, on the 12th. I glimpsed it through binoculars from a superb dark-sky site at Kielder Forrest, Northumberland, last week when it was a diffuse seventh magnitude smudge close to Merak, the southern star of the Pointers in the Plough.

Although its path is not depicted on our chart, the comet is poised to sweep close to three of the stars identified in Draco, between the Plough and Polaris, the Pole Star. It passes 0.6° north of Thuban on the night of the 2nd-3rd, 1.5° south-west of Eta on the 11th (sadly, in full moonlight) and 0.6° west of Beta on the 18th-19th. During past perihelia, it has been seen to flare by several magnitudes for a few days at a time, so, if we are lucky, it may reach naked-eye visibility.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on March 31st 2017, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in March, 2017

Brilliant Venus plunges into the evening twilight

The maps show the sky at 23.00 GMT on the 1st, 22.00 GMT on the 16th and 21.00 GMT (22.00 BST) on the 31st. Mars is plotted at its position at the month’s end. Summer time begins at 01.00 GMT on the 26th when clocks go forward one hour to 02.00 BST. (Click on map to enlarge)

The maps show the sky at 23.00 GMT on the 1st, 22.00 GMT on the 16th and 21.00 GMT (22.00 BST) on the 31st. Mars is plotted at its position at the month’s end. Summer time begins at 01.00 GMT on the 26th when clocks go forward one hour to 02.00 BST. (Click on map to enlarge)

Stargazers will be hoping for better weather as Orion and the stars of winter depart westwards in our evening sky, Venus dives into the evening twilight and around the Sun’s near side, while all the other bright planets are on view too. Indeed, Venus has the rare privilege of appearing as both an evening star and a morning star over several days, provided our western and eastern horizons are clear.

Orion still dominates our southern sky at nightfall as Leo climbs in the east and the Plough balances on its handle in the north-east. The Sun’s northwards progress and our lengthening days mean that by nightfall at the month’s end Orion has drifted lower into the south-west, halfway to his setting-point in the west. He is even lower in the west-south-west by our star map times when it is the turn of Leo to reach the meridian and the Plough to be almost overhead.

Leo’s leading star, Regulus, sits at the base of the Sickle of Leo, the reversed question-mark of stars from which meteors of the Leonids shower stream every November. The star Algieba in the Sickle (see chart) appears as a glorious double star through a telescope. Its components are larger and much more luminous than our Sun and lie almost 5 arcseconds apart, taking some 510 years to orbit each other. The pair lie 130 light years away and are unrelated to the star less than a Moon’s breadth to the south which is only half as far from us.

The Sun travels northward across the equator at 10:28 GMT on the 20th, the moment of the vernal (spring) equinox in our northern hemisphere. On this date, nights and days are of roughly equal length around the globe. Sunrise/sunset times for Edinburgh change from 07:04/17:47 GMT on the 1st to 06:46/17:49 BST (05:46/18:49 GMT) on the 31st after we set our clocks forwards to BST on the morning of the 26th. The lunar phases change from first quarter on the 5th to full on the 12th, last quarter on the 20th and new on the 28th.

Look for the young earthlit Moon well to the left of the brilliant magnitude -4.6 Venus on the 1st when telescopes show the planet’s dazzling crescent to be 47 arcseconds in diameter and 16% sunlit. Venus’ altitude at sunset plummets from 29° in the west-south-west on that day to only 7° in the west on the 22nd as its diameter swells to 59 arcseconds and the phase shrinks to only 1% – indeed, a few keen-sighted people might be able to discern its crescent with the naked eye and this is certainly easy to spot through binoculars.

Venus dims to magnitude -4.0 by the time it sweeps 8° north of the Sun and only 42 million km from the Earth at its inferior conjunction on the 25th. This marks its formal transition from the evening to the morning sky, but because it passes so far north of the Sun as it does every eight years or so, Venus is already visible in the predawn before we lose it in the evening. In fact, it is 7° high in the east at sunrise on the 22nd, and it only gets better as the month draws to its close.

Before Venus exits our evening sky, it meets Mercury as the latter begins its best spell as an evening star this year. On the 20th, the small innermost planet lies 10° to the left of Venus, shines at magnitude -1.2 and sets at Edinburgh’s western horizon 78 minutes after the Sun. By the 29th, it is 10° high forty minutes after sunset and shines at magnitude -0.4, easily visible through binoculars and 8° to the right of the very young Moon.

Mars, near the Moon on the 1st and again on the 30th, dims from magnitude 1.3 to 1.5 this month as it tracks from Pisces into Aries. By the month’s end, it lies to the left of Aries’ main star Hamal and sets at our map times. It is now more than 300 million km away and its disk, less than 5 arcseconds across, is too small to be of interest telescopically.

The Moon has another encounter with the Hyades star cluster on the night of the 4th-5th, hiding several of its stars but setting for Scotland before it reaches Taurus’ main star Aldebaran. The latter, though, is occulted later as seen from most of the USA. The Moon passes just below Regulus on the night of the 10th-11th and meets the planet Jupiter on the 14th.

Jupiter, conspicuous at magnitude -2.3 to -2.5, rises in the east at 21:37 GMT on the 1st and only 31 minutes after Edinburgh’s sunset on the 31st. Now edging westwards above the star Spica in Virgo, it is unmistakable as it climbs through our south-eastern sky to cross the meridian in the small hours and lie in the south-west before dawn. Its disk, 43 arcseconds wide at mid-month, shows parallel cloud bands through almost any telescope, while its four moons may be glimpsed through binoculars as they orbit from one side to the other.

Saturn, the last of the night’s planets, rises in the south-east at 03:44 GMT on the 1st and almost two hours earlier by the 31st. Improving very slightly from magnitude 0.5 to 0.4 during March, it is the brightest object about 10° above the south-south-eastern horizon before dawn. Look for it 4° below-left of the Moon on the 20th.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on February 28th 2017, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in August, 2016

Perseids rain as Mars approaches his rival

The maps show the sky at 00:00 BST on the 1st, 23:00 on the 16th and 22:00 on the 31st. (Click on map to enlarge)

The maps show the sky at 00:00 BST on the 1st, 23:00 on the 16th and 22:00 on the 31st. (Click on map to enlarge)

Every year at this time the Earth sweeps through the stream of meteoroids released by Comet 109P/Swift-Tuttle which passed just inside the Earth’s orbit in 1992 and is not due to return until 2126. And every year at this time, some of those meteoroids plunge into our upper atmosphere at 59 km per second, producing a rich display of bright meteors, many leaving glowing trains in their wake. According to some claims, this year’s meteor spectacle could be even better than usual.

The meteors appear in all parts of the sky but, since they are moving in parallel, perspective causes their paths to point away from a so-called radiant point in the constellation Perseus. It has already been active for a week, but it is expected to peak at about 13:00 BST on the 12th when, typically, an observer beneath the radiant and with a perfect dark sky might count 80 or more Perseids per hour. Of course, this year’s peak occurs in daylight for Scotland, but we should still enjoy high rates on our nights of 11/12th and 12/13th.

The radiant, plotted on our north star map, stands in the north-east at nightfall and climbs to lie just east of overhead before dawn. As the radiant climbs, so we face more directly into the Perseids stream and meteor rates climb in sympathy. This means that our morning hours are favoured and we have the extra advantage that the Moon sets in the middle of the night on the critical nights, though moonlight will hinder evening watches. Another bonus is that the nights are much less cold than they are for the year’s other two major showers which occur in the depths of winter.

The suggestions that the Perseids might be particularly active in 2016, with perhaps twice as many meteors as usual, derive from the fact that Jupiter approaches the Perseids stream every 12 years and its gravity might be diverting a segment of the stream closer to the Earth on each encounter. Indeed, there does seem to be a 12-years periodicity in enhanced Perseids displays with the last one in 2004, so we may be due for another special show this month.

Sunrise/sunset times for Edinburgh change from 05:17/21:19 BST on the 1st to 06:16/20:09 on the 31st. The Moon is new on the 2nd, at first quarter on the 10th, full on the 18th and at last quarter on the 25th.

Our chart depicts the Summer Triangle, formed by Deneb, Vega and Altair, high on the meridian as the Plough sinks in the north-west and the “W” of Cassiopeia climbs in the north-east, above the Perseids radiant. The large but rather empty Square of Pegasus balances on a corner in the east-south-east while the Teapot of Sagittarius is toppling westwards on our southern horizon. To its right, and very low in the south-west, is Saturn, the only bright planet visible at our map times.

Saturn hardly moves this month, being stationary against the stars on the 13th when it reverses from westerly to easterly in motion. It lies in Ophiuchus, 6° north of the red supergiant star Antares in Scorpius. Antares is around magnitude 1.0 while Saturn is almost twice as bright at 0.4. Saturn stands above Antares low in the south-south-west as tonight’s twilight fades but are outshone by the Red Planet, Mars, which lies 10° to their right and is three times brighter than Saturn at magnitude -0.8.

Mars, though, is moving eastwards (to the left) at almost a Moon’s-breadth each day and passes between Antares and Saturn, and 1.8° above Antares, on the 24th. Even though Mars dims to magnitude -0.4 by then, it remains much brighter than Antares even though the star’s name comes from the Ancient Greek for “equal to Mars”. Both appear reddish, of course, but for very different reasons – Antares has a bloated “cool” gaseous surface that glows red at about 3,100°C while Mars has a rocky surface which is rich in iron oxide, better known as rust.

The Moon stands above-right of Mars and to the left of Saturn on the 11th when Mars appears only 12 arcseconds wide if viewed through a telescope. Saturn is 17 arcseconds across while its rings span 39 arcseconds and have their north face tipped 26° towards us. By the 31st, Mars has faded further to magnitude -0.3 and lies 4° above-left of Antares.

Observers at our northern latitudes must work hard to spot any other bright planet this month although anyone in the southern hemisphere can enjoy a spectacular trio of them low in the west at nightfall. Seen from Scotland, though, the brilliant (magnitude -3.9) evening star Venus stands barely 5° above our western horizon at sunset and sets itself less than 40 minutes later. We need a pristine western outlook to see it, and quite possibly binoculars to glimpse it against the twilight.

Fainter (magnitude -1.7) is Jupiter which stands currently 27° to the left of Venus and 5° higher so that it sets more than 70 minutes after the Sun. Between them, and considerably fainter, is Mercury which stands furthest from the Sun (27°) on the 16th and, perhaps surprisingly, is enjoying its best evening apparition of the year as seen from the southern hemisphere.

Jupiter sinks lower with each evening and meets Venus on the 27th when Venus passes less than 5 arcminutes north of Jupiter. This is the closest planetary conjunction of the year and would be spectacular were the two not so twilight-bound. As it is, binoculars might show Jupiter 9 arcminutes below and left of Venus on that evening.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on August 1st 2016, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in January, 2016

Quadrantids bring New Year fireworks on the 4th

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to enlarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to enlarge)

If one of our resolutions for the New Year is to get to grips with the sky at night, then we could hardly do better than start with our January evenings. The unmistakable constellation of Orion the Hunter rises in the east at nightfall and is the centrepiece of a star-strewn region in the south-south-east by our star map times. On the other hand, most of the brighter planets, and what may be our brightest comet of 2016, are best seen in the morning sky.

Just as last month brought the Geminids as the best meteor shower of 2015, so the imminent Quadrantids shower may provide our best display of 2016. Lasting from today until the 6th, but with most of its activity in the hours before dawn on the 4th, its medium speed meteors are seen in all parts of the sky but diverge from a radiant point below and left of the Plough’s handle. The Plough itself lies in the north at nightfall and climbs through the north-east and east to lie overhead before dawn.

Most of the constellation figures show little relation to the things, persons or animals they represent. Orion is a striking exception, for he has conspicuous stars at his shoulders and knees and an iconic line of three stars to define the belt around his waist. Admittedly, his head is marked only by a knot of fainter stars, although if we look carefully we can find an arc of other faint stars to represent the shield he holds in the face of the charging bull, Taurus. Another line hangs below his belt to form his sword.

Use binoculars or a telescope to inspect the sword and it is easy to spot the Orion Nebula, a cloud of gas and dust that lies some 1,350 light years away. This miasma of greens, reds and blues is a region where new stars are forming, together with their nascent planetary systems.

The line of Orion’s belt slants downwards to the brightest star Sirius in Canis Major, the larger of Orion’s two dogs. Extend the line the other way and we reach Taurus with its leading star Aldebaran in and the Pleiades star cluster. As Orion sinks towards our western horizon early on the morning of the 20th, Aldebaran is once again occulted by the Moon. As seen from Edinburgh, the star disappears behind the upper edge of the Moon just before 03:24.

It may be hard to believe, but the Earth is closest to the Sun for the year (147,100,176 km) when it reaches perihelion late tomorrow. Sunrise/sunset times for Edinburgh vary from 08:44/15:49 today to 08:10/16:42 on the 31st, while the Moon is at last quarter tomorrow, new on the 10th, at first quarter on the 16th and full on the 24th.

Jupiter rises at Edinburgh’s eastern horizon at 22:39 tonight and two hours earlier by the 31st. Now in south-eastern Leo and already twice as bright as Sirius, it brightens from magnitude -2.2 to -2.4 this month and reaches a so-called stationary point on the 8th when its easterly motion reverses to westerly. If you did get a telescope for Christmas, then enjoy the view of its fascinating cloud-banded disk which swells in diameter from 39 to 42 arcseconds. Jupiter stood near the Moon last night and the two are even closer on the 28th-29th.

Mars rises in the east-south-east by 02:15 and lies to the left of Spica in Virgo as they pass 25° high in the S before dawn tomorrow. The Moon is nearby on Sunday and even closer on 1 February, by which time Mars has travelled east-south-eastwards into Libra where it lies just above the double star Zubenelgenubi. Mars improves from magnitude 1.3 to 0.8 to overtake Spica in brightness, but is shows only a small 6 arcseconds disk through a telescope.

Venus continues as a brilliant morning star (magnitude -4.1 to -4.0) though its altitude in the south-east at sunrise sinks from 15° today to 8° by the 31st. It lies to the right of the waning Moon on the 7th when a telescope shows its disk to be 79% sunlit and 14 arcseconds wide. Venus is just 2° to the right of Saturn on that morning and within 7 arcminutes of Saturn on the 9th. At magnitude 0.5, Saturn is much the fainter of the two as it creeps eastwards in southern Ophiuchus.

Mercury has a few more days as a difficult evening star. It is bright at magnitude -0.2 tonight, but it hugs our south-western horizon at nightfall and sets less than 100 minutes after the Sun. As the month ends it is back in our morning twilight, a few degrees to the left of Venus.

Comet 2013 US10 Catalina has remained stubbornly below naked eye brightness in our morning sky, though photographs reveal a striking divergence between its tails of dust and ionized gas, the latter being torn and billowed by the solar wind.

Following perihelion 123 million km from the Sun in mid-November, the comet is closest to Earth (108 million km) on the 17th. Likely to appear as a small greenish fuzzy blob through binoculars, it moves from less than 0.5° west of the conspicuous star Arcturus in Bootes this morning to lie 1.2° east of Alkaid, the star at the end of the Plough’s handle, before dawn on the 15th. It is currently around the sixth magnitude but may be a magnitude dimmer by the month’s end as it sweeps within 9° of Polaris and recedes on a trajectory that will never bring it back towards the Sun.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on January 2nd 2016, with thanks to the newspaper for permission to republish here.  Journal Editor’s apologies for the lateness of the article appearing here.

Scotland’s Sky in December, 2015

Get ready for a memorable meteor display

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to englarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to englarge)

Experience tells us that the coldest night of the winter is unlikely to occur during December, but the month does bring our longest ones as the Sun dips to its farthest south at the winter solstice, due this year at 04:48 GMT on the 22nd.

Those long nights begin with Pegasus nearing the meridian but, by our star map times, its famous Square is in the south-west and our eastern sky has been claimed by the sparkling constellations of winter. Orion is unmistakable, his three Belt stars aligned almost vertically and pointing up to Aldebaran in Taurus and on to the Pleiades cluster.

There is another occultation of Aldebaran by the Moon on the 23rd with the star blinking out at the Moon’s limb just before 18:18 as viewed from Edinburgh, and reappearing by 19:15. The Moon’s glare means that we will probably need a telescope to view the event.

Sunrise/sunset times for Edinburgh vary from 08:18/15:44 on the 1st, to 08:42/15:40 on the 22nd and 08:44/15:47 on the 31st. The Moon’s last quarter on the 3rd is followed by new on the 11th, first quarter on the 18th and full on the 25th.

Our evening sky remains devoid of bright planets at present, but the return of the annual Geminids meteor shower is ample compensation. Now regarded as our best meteor display, this is active from the 8th to the 17th with its peak predicted for about 13:00 on the 14th with meteor rates of perhaps 120 per hour for an observer under an ideal dark sky. This is, of course, during our daylight but, unlike some other showers, meteor activity remains high for more than 24 hours and the nights of 13th/14th and 14th/15th could both be memorable. Just be careful to wrap up well to get your fill of long, bright, medium-slow meteors.

The radiant, the point in the sky from which the meteors appear to diverge, is plotted close to the star Castor in Gemini on the eastern side of our North map. Gemini lies north and east of Orion and as Orion marches across our southern sky so the radiant climbs to pass high in the south at 02:00. Remember that the meteors are visible in all parts of the sky, not just near Gemini – it is their streaks that point back to the radiant.

As Orion crosses our meridian some four hours after our map times, so the first bright planet of the night rises in the east. Jupiter brightens further from magnitude -2.0 to -2.2 as it creeps 2° or four Moon-breadths east-south-eastwards in south-eastern Leo, some 20° below and left of the star Regulus.

As the most conspicuous object in the middle of our southern sky before dawn, Jupiter stands just above the Moon on the 4th and to the Moon’s left on the 31st. By the month’s end, it rises more than one hour before midnight and its interesting cloud-banded disk has swollen in diameter from 36 to 39 arcseconds as seen telescopically.

The night’s second naked-eye planet, Mars, lies 20° east-south-east (below-left) of Jupiter and just below the star Porrima in Virgo as the month begins. At magnitude 1.5, but improving to 1.3, it, too, tracks east-south-eastwards to pass 4° north of Spica on the 21st. Look for it close to the waning Moon before dawn on the 6th but don’t expect your telescope to show much if any detail on its tiny 5 arcseconds disk.

The third planet is the brightest of all. Venus climbs above Edinburgh’s eastern horizon at 03:53 on the 1st and, at magnitude -4.2, may still be visible 25° high in the south-south-east at sunrise. It is then 4° north-east of Spica, but it speeds through Virgo and much of Libra so that, by the 31st, it rises in the south-east at 05:26 and is 15° high in the south at sunrise.

As Venus recedes, its gibbous disk shrinks from 17 to 14 arcseconds in diameter. Its motion takes it 2° above Zubenelgenubi in Libra on the 17th and to within a similar distance of the Graffias in Scorpius on the 31st. Venus is occulted for observers over much of N America as it is overtaken by the Moon next Monday.

Saturn, magnitude 0.5, emerges from the morning twilight to hover low in the south-east, below and to the left of Venus, during the final ten days of the year. On those same days, but in the evening, it might just be possible to spot Mercury as it shines at magnitude -0.5 some 5° high in the south-west only 30 minutes after sunset.

Comet 2013 US10 Catalina is likely to be a binocular object as it climbs into our south-eastern sky before dawn. Thought to be an asteroid when it was discovered in 2013, hence its odd name, it was closest to the Sun (123 million km) on November 15 and is due to pass closest to the Earth (108 million km) on January 17. There has been speculation that it might become a naked eye object of the fourth magnitude or better.

However, having spent weeks hidden in the Sun’s glare, it was a disappointing sixth magnitude object when it was recovered a couple of weeks ago. I fear it may not get much better than this, though the fact that it has two, or even three, tails will make for some interesting photographs. From 11° below-left of Venus as the month begins, it tracks almost due northwards to stand only 4° to the right of Venus next Monday (with the Moon nearby) and lie a mere 2° south of the bright star Arcturus in Bootes by the 31st.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on December 1st 2015, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in August, 2015

Perseids meteor shower peaks under moonless skies

The maps show the sky at 00:00 BST on the 1st, 23:00 on the 16th and 22:00 on 31st. (Click on map to englarge)

The maps show the sky at 00:00 BST on the 1st, 23:00 on the 16th and 22:00 on 31st. (Click on map to englarge)

The revelations by New Horizons at Pluto were certainly the highlight for July, showing that even small ice-bound worlds far from the Sun can have an active and fascinating geology. No doubt we are in for further surprises as the data from the encounter are downloaded over the narrow-bandwidth link to the probe over the coming months.

August sees our attention return to Comet 67P/Churyumov–Gerasimenko which is due to experience its peak activity as it sweeps through perihelion, its closest to the Sun, on the 15th. We should enjoy a grandstand view courtesy of Europe’s Rosetta probe in orbit around the comet’s icy nucleus, but it is far from certain that Philae will be able to relay further measurements from the surface. The comet’s perihelion occurs 26 million km outside the Earth’s orbit so none of the icy debris being driven from its nucleus is destined to reach the Earth.

The Earth does, though, intersect the orbit of Comet 109P/Swift-Tuttle with the result that its debris or meteoroids plunge into the upper atmosphere to produce the annual Perseids meteor shower. Its meteors diverge from a radiant point in Perseus which lies in the north-east at our star map times and climbs to stand just east of the zenith before dawn. Note that the shower’s meteors appear in all parts of the sky, with many of them bright and leaving persistent trains in their wake as they disintegrate at 59 km per second.

According to the British Astronomical Association (BAA), the premiere organisation for amateur astronomers in Britain, the shower is active from July 23 until August 20 and, for an observer under ideal conditions, reaches a peak of 80 or more meteors per hour at about 07:00 on the 13th. This is obviously after our daybreak, but rates should be high throughout the night of the 12th-13th and particularly before dawn, and respectable on the preceding and following nights too. With the Moon new on the 14th and causing no interference, the BAA puts the Perseids’ prospects this year as very favourable, an accolade it shares with the Geminids shower in December.

The Sun dips 10° southwards during August as sunrise/sunset times for Edinburgh change from 05:16/21:21 BST on the 1st to 06:14/20:11 on the 31st. The duration of nautical twilight at dawn and dusk shrinks from 121 to 89 minutes. The Moon is at first quarter on the 7th, new on the 14th, at first quarter on the 22nd and full again on the 29th.

After the twilit nights during the weeks around the solstice, August should bring (if the weather ever improves!) a chance to reacquaint ourselves with the best of what the summer skies can offer. The Summer Triangle formed by Vega in Lyra, Deneb in Cygnus and Altair in Aquila stands high in the south at our star map times, somewhat squashed by the map projection used. After the Moon leaves the scene, look for the Milky Way as it flows diagonally through the Triangle, its mid-line passing between Altair and Vega and close to Deneb as it arches over the sky from the south-south-west towards Cassiopeia, Perseus and Auriga in the north-east.

The main stars of Cygnus the Swan are sometimes called the Northern Cross, particularly when the cross appears to stand upright in our north-western sky later in the year. The Swan’s neck stretches south-westwards from Sadr to Albireo, the beak, which is one of the finest double stars in the sky. A challenge for binoculars, almost any telescope shows Albireo as a contracting pair of golden and bluish stars.

The brightest star on the line between Sadr and Albireo is usually the magnitude 3.9 Eta. However, just 2.5° south-west of Eta is the star Chi Cygni which pulsates in brightness every 407 days or so and belongs to the class of red giant variable stars that includes Mira in Cetus. Chi is a dim telescopic object at its faintest, but it can become easily visible to the naked eye at its brightest. Last year, though, it only reached magnitude 6.5, barely visible to the naked eye. Now approaching maximum brightness again and as bright as magnitude 4.2 in late July, it may surpass Eta early in August, so is worth a look.

Venus and Jupiter have dominated our evening sky over recent months but are now lost in the Sun’s glare to leave Saturn as our only bright planet as the night begins. Although it dims slightly from magnitude 0.4 to 0.6, it remains the brightest object low down in the south-west as the twilight fades. Indeed, it stands only 5° or so above Edinburgh’s horizon at the end of nautical twilight and sets thirty minutes after our map times, so is now poorly placed for telescopic study. Catch it 2° below-right of the first quarter Moon on the 22nd when Saturn’s rings are tipped at 24° and span 38 arcseconds around its 17 arcseconds disk.

Jupiter reaches conjunction on the Sun’s far side on the 26th while Venus sweeps around the Sun’s near side on the 15th and reappears before dawn a few days later. Brilliant at magnitude -4.2, its height above Edinburgh’s eastern at sunrise doubles from 6° on the 25th to 12° by the 31st.

Also emerging in our morning twilight is the much dimmer planet Mars, magnitude 1.8. On the 20th and 21st it rises in the north-east two hours before the Sun and lies against the Praesepe or Beehive star cluster in Cancer. Before dawn on the 31st, Mars stands 9° above-left of Venus.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on July 31st 2015, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in January, 2015

Comet Lovejoy heralds an exciting year in astronomy

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to englarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to englarge)

The coming year promises to be an exciting one in astronomy and space research. NASA’s New Horizons mission is due to make the first flyby visit to Pluto in July while Comet Churyumov–Gerasimenko is nearest the Sun a month later, hopefully with Europe’s Rosetta probe still alongside and in prime position to observe the comet in full flow. Whether we hear again from the Philae lander remains to be seen, but its controllers are hopeful that it may come back to life in the spring.

Closer to home, the highlight is surely the solar eclipse on the morning of 20 March. This is total for the Faroe Islands and Svalbard while from Scotland the Moon hides all but a thin sliver around the Sun’s lower limb. From Edinburgh 94% of the Sun is obscured but for observers in Kirkwall, Lerwick and Stornoway this jumps to 97%.

January should be interesting in its own right. Not only are all the planets on view, but the constellations centred on Orion dominate our evening hours and we have the prospect that Comet Lovejoy may be a naked-eye object as it climbs to the right of Orion.

The year begins with the Quadrantids meteor shower which is active from the 1st to the 6th but reaches a rather sharp peak at around midnight on the 3rd/4th when as many as 80 medium-speed meteors per hour might be seen under ideal conditions from a dark location. Sadly, the Moon is full on the 5th so all but the brighter meteors will be swamped in the moonlight this year. Quadrantids appear in all parts of the sky but their paths trace back to a radiant point that is plotted low in the north at our star map times. Later in the night the radiant follows the Plough as it climbs through our north-eastern sky.

You may find it surprisingly that the Earth is at perihelion, our closest to the Sun, at 06:36 on the 4th. The centre of our planet then lies 147,096,204 km from the Sun, 5 million km closer than it does at aphelion on 6 July. Sunrise/sunset for Edinburgh change from 08:44/15:49 on the 1st to 08:10/16:43 on the 31st as the duration of nautical twilight at each dawn and dusk shrinks from 96 to 85 minutes. That full moon on the 5th is followed by last quarter on the 13th, new moon on the 20th and first quarter on the 27th.

As the Moon climbs in the east on the evening of the 1st, it stands below the Pleiades and above-right of Aldebaran, the eye of Taurus. By 19:00 the whole of Orion is unmistakable in the east-south-east, moving into the south-south-east by our map times as the Pleiades glimmer on the meridian.

Our chart traces the path of Comet Lovejoy as it climbs from Lepus the Hare, at Orion’s feet, through Eridanus the River and Taurus as it approaches the star Almach in Andromeda as the month ends. Discovered in August by the Australian amateur astronomer Terry Lovejoy, the comet has brightened more than most people expected and reached the threshold of naked-eye visibility, the sixth magnitude, in mid-December.

During January I expect it to shine at around the 4th or 5th magnitude, fainter than the stars on our chart but perhaps similar in brightness to the Orion Nebula. As such, it should be visible easily through binoculars as a hazy smudge, probably smaller than the Moon and with brighter core around its nucleus. Indeed, it should be a naked-eye object in a dark sky once the current moonlight has subsided. Photographs show a greenish hue and a narrow striated tail more than 5° long pointing up and to the left, away from the Sun.

Comet Lovejoy takes about 13,500 years to orbit the Sun and reaches perihelion on 30 January at a distance of 193 million km. It comes closest to the Earth, 70 million km, on the 7th.

Jupiter remains our pre-eminent planet as it rises in the east-north-east some 90 minutes before our map times. Blazing at magnitude -2.5 to -2.6, it is now creeping westwards to the west (right) of the Sickle of Leo and crosses the meridian in the early hours. A telescope shows it to be 44 arcseconds wide when it stands above the Moon on the morning of the 8th.

Venus is a brilliant magnitude -3.9 evening star very low in the south-west as the night begins. It sets for Edinburgh at 17:07 on the 1st and at 18:58 by the 31st. Use it (and binoculars) to locate Mercury which shines at magnitude -0.8 as it moves from 3° below-right of Venus on the 1st to lie less than 0.7° to the right of Venus on the 11th. It then tracks to the right of Venus and lies 7° away by the 22nd when it is a difficult magnitude 0.9 object in the twilight. On that evening, the thin earthlit Moon lies 9° above Venus and 7° to the right of the orange-hued planet Mars (magnitude 1.2) which otherwise remains the brightest object low in the south-west at nightfall.

The other naked-eye planet, Saturn, rises in the south-east at about 05:20 on the 1st and almost two hours earlier by the month’s end, becoming the brightest object low in the south-south-east to south before dawn. This month it tracks eastwards from Libra to pass 1° north of the star Graffias in Scorpius. Look for Saturn 2.6° below-left of the waning Moon on the 16th when a telescope shows its globe to be 16 arcseconds wide within rings that span 36 arcseconds and have their north face tipped 25° towards the Earth.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on December 30th 2014, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in December, 2014

Jupiter outstanding as the Geminids meteors fly

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to englarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to englarge)

December brings our longest nights of the year and what may be 2014’s richest meteor shower. Indeed, there is an argument for ranking December nights as the most spectacular of the year if only because Orion, and the sparkling constellations that attend him, stand at their highest near the meridian at midnight. Of the bright planets, Jupiter outshines every star and is well placed from mid-evening onwards, but the others are lurking shyly near the Sun and require a little more effort.

Jupiter is unmistakable from the moment it rises in the east-north-east some 35 minutes after our star map times. Improving in brightness from magnitude -2.3 to -2.5 this month, it climbs to pass high in the south and onwards into the south-west before dawn. We find it in Leo, to the right of the Sickle and less than 8° above-right of Regulus. It is here that it reaches a stationary point on the 9th before beginning a westerly motion which carries it back into Cancer just a day before its opposition in early February.

With its large disk and changing cloud-patterns, Jupiter is always an rewarding telescopic sight while the motions from side to side of its four main moons may be followed using nothing more than decent binoculars. When Jupiter lies near the Moon on the night of the 11th-12th, it is 717 million km distant and its globe appears 41 arcsec in diameter.

Orion stands clear of the horizon in the east-south-east at the map times. Its main stars, the blue-white supergiant Rigel at Orion’s knee and the contrasting red supergiant Betelgeuse at his shoulder, are among the ten brightest. the trio of stars between them form Orion’s Belt while hanging below the Belt is Orion’s Sword and the fuzzy glow of the Orion Nebula where new stars and planets are forming, albeit slowly, before our eyes.

A line upwards along the Belt extends to Aldebaran (close to the Moon on the 5th-6th) and onwards to the Pleiades or Seven Sisters star cluster. Carry the line downwards towards Sirius which rises one hour after our map times and is our brightest star after the Sun.

North and east (above-left) of Orion lies Gemini with its twins Castor and Pollux, while close to Castor (see chart) is the radiant point for the annual Geminids meteor shower. Bright medium-slow meteors streak in all parts of the sky between the 8th and 17th but all radiate away from this point as they follow parallel paths into the upper atmosphere. The radiant climbs from the north-north-east horizon at nightfall to pass high in the south at about 02:00. Meteor rates are expected to be highest during the 24 hours around 07:00 on the morning of the 14th when more than 80 Geminids per hour might be counted under ideal conditions. The Moon is much less obtrusive than during the Geminids last year.

The Square of Pegasus crosses the high meridian in the early evening and shifts to the south-west by our map times as Andromeda stretches up from its upper-left corner. High in the south are the two smaller constellations of Triangulum the Triangle and Aries the Ram. Aries’ main star, Hamal, is identical in brightness to Polaris, the Pole Star, but lies perhaps five times closer to us at 66 light years, It also appears to have a planet that is larger than Jupiter and takes 381 days to orbit at a distance slightly greater than that between the Earth and the Sun.

Aries also gives its name to the celestial counterpart of the Greenwich meridian. Longitudes in the sky are measured eastwards from the so-called First Point of Aries where the Sun crosses the sky’s equator at the spring or vernal equinox. When the Greek astronomer Hipparchus assigned the name more than two thousand years ago this point was located in Aries. However, the Earth wobbles on its axis over a period of 26,000 years with the result that the First Point of Aries has slipped more than 30° westwards against the stars and now lies to the south of the Square of Pegasus in the dim constellation of Pisces.

The Sun is furthest south in the sky at 23:03 GMT on the 21st, the moment of our winter solstice. Sunrise/sunset times for Edinburgh change from 08:19/15:44 on the 1st, to 08:43/15:40 on the 21st and 08:44/15:48 on the 31st. Nautical twilight persists for around 94 minutes at dawn and dusk. The Moon is full on the 6th, at last quarter on the 14th, new on the 22nd and at first quarter on the 28th.

Mars, the best of the planets after Jupiter, is the brightest object low in the south-south-west at nightfall and climbs a little higher from night to night as it slides northwards in relation to the Sun. It does, though, dim from magnitude 1.0 to 1.1 as it tracks eastwards through Capricornus. It sets at about 19:15 and stands left of the young earthlit Moon on Christmas Eve.

By mid-month, and provided we have a clear south-western horizon, we may be able to spot the brilliant (magnitude -3.9) evening star Venus just after sunset. At Hogmanay, Venus stands 6° high at sunset and sets itself 76 minutes later. Mercury slips around the Sun’s far side on the 8th and is destined to join Venus as an evening star in the New Year.

Saturn is emerging as a pre-dawn object low in the south-east where it shines at magnitude 0.5 as it tracks from Libra into Scorpius. Catch it 7° below-left of the waning Moon on the 19th.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on November 28th 2014, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in November, 2014

Europe’s Philae probe to attempt first touchdown on comet

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 30th. (Click on map to englarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 30th. (Click on map to englarge)

In an exciting month in astronomy and space exploration, November should bring the first soft landing on a comet when the European Space Agency’s Philae craft detaches from the Rosetta probe and drops gently onto the icy nucleus of Comet Churyumov-Gerasimenko.

Our sky at nightfall s similar to that of a month ago although, with our return to GMT, darkness arrives more than two hours earlier in the evening. Mars continues as the only bright planet at these times, visible low in Edinburgh’s south-south-western sky and fading only a little from magnitude 0.9 to 1.0 as it tracks eastwards above the Teapot of Sagittarius.

However, even though Mars is drawing closer to the Sun, its altitude at the end of nautical twilight improves from 5° to 9° during November as the Sun plunges more than 7° southwards in the sky and Mars edges almost 3° northwards. This also means that Mars-set in the south-west occurs at about 19:05 throughout the period. It stands below the young crescent Moon on the 26th.

Sunrise/sunset times for Edinburgh change from 07:19/16:33 GMT on the 1st to 08:17/15:45 on the 30th as the duration of nautical twilight at dawn and dusk extends from 83 to 93 minutes. The Moon is full on the 6th, at last quarter on the 14th, new on the 22nd and at first quarter on the 29th.

Comet Churyumov-Gerasimenko lies 6° south-east of Mars on the 12th but is a very dim telescopic object some 450 million km from the Sun. On that day Philae is due to unlatch from Rosetta and take about seven hours to fall 22.5km, coming to rest on tripod legs at about 16:00 GMT atop the head of the comet’s strange “rubber-duck” shape. To stop itself bouncing off into space in defiance of the comet’s feeble gravitational pull, it should then fire a tethered harpoon to anchor itself to the surface.

The comet’s 6-year orbit is carrying it closer to the Sun, eventually to reach perihelion at a distance of 186 million km next August. Meantime, its activity is picking up and Rosetta is imaging jets of dust and gas emerging, mainly from the duck’s neck region at present. With Philae in position to also monitor conditions at the surface, and even below the crust using sonar, seismographs and permittivity probes, our knowledge of what makes comets tick should soon be transformed.

The Summer Triangle of Vega, Deneb and Altair, lies in the west at our map times as Orion rises in the east below Taurus and the Pleiades. The Square of Pegasus stands high on the meridian with the three main stars of Andromeda, Alpheratz, Mirach and Almach, leading off from its top-left corner. The Andromeda Galaxy, M31, could hardly be better placed, being visible to the naked eye in a decent sky and not difficult at all through binoculars. It stands 2.5 million light years (ly) away and appears as an oval smudge some 8° above Mirach.

A line through the Square’s two right-hand stars points the way to Fomalhaut, bright but very low in the south. I mentioned last time that it may have at least a couple of planets. In fact, the first so-called extrasolar planet circling a solar-type star was discovered in 1995 and is about half the size of Jupiter yet orbits in only 4.2 days at a distance only one seventh of that of Mercury from the Sun. The star concerned is 51 Pegasi, magnitude 5.5 and 50 ly distant, which is unmistakable through binoculars just 1.5° or 3 Moon-widths to the right of the Scheat-Markab line.

Of the 1,800-plus extrasolar planets now known, no less than four orbit Upsilon Andromedae, a fourth magnitude star at 44 ly that stands between Mirach and Almach (see chart).

Jupiter, is creeping eastwards to the right of the famous Sickle of Leo. Rising in the east-north-east at about 23:20 on the 1st and as early as 21:40 on the 30th, it is prominent until dawn as it climbs through our south-eastern sky to pass about 50° high on our meridian before dawn. The Jovian disk is 38 arcseconds across when Jupiter lies near the Moon on the night of 13/14th.

The annual Leonids meteor shower lasts from the 15th to the 20th, building to a sharp peak on the morning of the 18th. Its super-swift meteors flash in all parts of the sky, though their paths radiate from a point in the Sickle. There is little moonlight interference this year, but meteor rates may be well down on what they were a few years ago when the shower’s parent comet was in the vicinity.

Venus sets too soon after the Sun to be seen, and with Saturn reaching conjunction on the Sun’s far side on the 18th, our only other observable bright planet is Mercury, fortunately putting on its best morning show of 2014.

On the 1st Mercury rises two hours before the Sun and shines at magnitude -0.5 as it climbs to an altitude of 10° in the east-south-east forty minutes before sunrise. Although it soon brightens to magnitude 0.8, it also slips back towards the Sun, so that by the 14th it rises 89 minutes before the Sun and is 6° high forty minutes before sunrise. Given a clear horizon, though, binoculars should show it easily and it should be a naked-eye object until it is swamped by the brightening twilight. Look for Virgo’s leading star, Spica, climbing from below Mercury to pass 5° to its right on the 7th.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on October 31st 2014, with thanks to the newspaper for permission to republish here.