Blog Archives

Scotland’s Sky in September, 2017

Cassini’s scheduled suicide at Saturn

The maps show the sky at 23:00 BST on the 1st, 22:00 on the 16th and 21.00 on the 30th. (Click on map to enlarge)

The maps show the sky at 23:00 BST on the 1st, 22:00 on the 16th and 21.00 on the 30th. (Click on map to enlarge)

The heroic Cassini mission to Saturn is set to reach its dramatic conclusion on 15 September. After a seven-year journey from Earth, the probe has been studying the planet, its glorious rings and its fascinating moons for the past thirteen years. Now, with its fuel running low, it is time for the NASA probe to plunge into the Saturnian atmosphere where, in the interest of so-called planetary protection, it will disintegrate and vaporise.

To leave it in orbit around the planet would run the risk of it colliding with the rings or one of the moons, with the outside possibility of contaminating them with microbes from the Earth. This was of little concern when Cassini’s mission was planned, and it carried and delivered the European-built Huygens probe which parachuted to the surface of Saturn’s largest moon, Titan. It touched down on a world in which rivers of liquid hydrocarbons, chiefly methane, flow into lakes in a landscape dominated by water-ice mountains.

Now, though, we realise that despite Saturn’s remoteness from the Sun, the possibility of alien life there cannot be discounted. Indeed, it seems clear that its small moon Enceladus has a subsurface watery ocean and there has been talk of sending a mission to search for organic compounds in the plumes of water erupting from geysers on its surface.

Recent orbits of Saturn have seen Cassini piercing the gap between Saturn and its rings, and even skimming the planet’s outer atmosphere. It will continue to collect data as it begins its final suicidal dive into Saturn’s atmosphere on the 15th, but its signal will be lost at around 13:00 BST as aerodynamic forces cause it to tumble and, eventually, break apart and burn up.

The Sun crosses southwards over the equator at 21:02 BST on the 22nd, the moment of our autumnal equinox. Sunrise/sunset times for Edinburgh change from 06:17/20:07 BST on the 1st to 07:14/18:50 on the 30th. The Moon is full on the 6th, at last quarter on the 13th, new on the 20th and at first quarter on the 28th.

Now that Scotland’s persistent summer twilight is behind us, our nights offer views of the Milky Way as it arches directly overhead from the south-west to the north-east at our chart times, carving through the Summer Triangle formed by Deneb, Altair and Vega which now lies just west of the high meridian.

To the east of the Triangle is the distinctive form of the celestial dolphin, Delphinus, where the celebrated English amateur astronomer George Alcock discovered a famous and unusual naked-eye nova fifty summers ago in 1967. I remember watching the stellar outburst as it took five months to reach its peak brightness at magnitude 3.5. Now assigned the variable-star tag HR Delphini, the star is still visible as a twelfth magnitude object through telescopes.

Another 13° east of Delphinus is the globular star cluster Messier 15, 4° north-west of Pegasus’s brightest star, Enif. A tightly packed globe of perhaps 100,000 stars, all very much older than our Sun, M15 lies around 34,000 light years away and looks like a fuzzy star through binoculars.

Saturn is the sole bright planet to appear on our star maps. Look for it as the brightest object low down in the south-south-west at nightfall and even lower in the south-west by our map times, only thirty minutes before it sets. Edging eastwards in Ophiuchus, it shines 4° below-left of the Moon on the 26th.

Jupiter is bright at magnitude -1.7 but hard to see very low in the west-south-west just after sunset. By mid-month it is likely to be lost in the twilight.

Our charts plot the two outer planets, the ice giant world Uranus in Pisces and its near-twin Neptune in Aquarius, though we probably need more detailed charts to identify them through binoculars or telescopes. At magnitude 5.7, Uranus is at the verge of naked-eye visibility, while Neptune reaches opposition on the 5th and is dimmer at magnitude 7.8.

The other planets are about to join Venus low down in our eastern sky at the end of the night. The brilliant morning star shines at magnitude -4.0 when it rises in the north-east at 03:04 for Edinburgh on 1 September, and climbs 25° high into the east by sunrise. Catch it through binoculars before the twilight intervenes on that day and look 1.2° to its left for the Praesepe or Beehive cluster of stars in Cancer. Leaving the cluster behind, Venus tracks east-south-eastwards into Leo to pass 0.5° (a Moon’s breadth) north of the star Regulus on the 20th.

Mercury emerges from the Sun’s glare to stand 18° west of the Sun and 11° below-left of Venus on the 12th. Between the 6th and 23rd it rises more than 80 minutes before sunrise and brightens eightfold from magnitude 1.1 to -1.1. On the 6th, in fact, Mercury lies 2.5° to the right of Regulus which, in turn, is 0.8° to the right of the fainter magnitude 1.8 planet Mars. As Regulus climbs above them, the two planets then converge to lie less than 0.5° apart on the 16th and 17th.

Early risers are in for a special treat when the waning earthlit Moon joins the party on the 17th. On that morning, Venus stands 10° below-left of the Moon and almost 4° above-right of Regulus, with the Mars-Mercury conjunction another 8° below and to the left. On the 18th, the line-up is even more compact as the Moon shifts to lie 0.7° below Regulus. By the 30th, Venus rises in the east-north-east at 04:41 and is 3° above-right of Mars.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on August 31st 2017, with thanks to the newspaper for permission to republish here.
Advertisements

Scotland’s Sky in August, 2017

Countdown to the Great American Eclipse

The maps show the sky at 00:00 BST on the 1st, 23:00 on the 16th and 22:00 on the 31st. (Click on map to enlarge)

The maps show the sky at 00:00 BST on the 1st, 23:00 on the 16th and 22:00 on the 31st. (Click on map to enlarge)

With two eclipses and a major meteor display, August is 2017’s most interesting month for sky-watchers. Admittedly, Scotland is on the fringe of visibility for both eclipses while the annual Perseids meteor shower suffers moonlight interference.

The undoubted highlight is the so-called Great American Eclipse on the 21st. This eclipse of the Sun is total along a path, no more than 115km wide, that sweeps across the USA from Oregon at 18:17 BST (10:17 PDT) to South Carolina at 19:48 BST (14:48 EDT) – the first such coast-to-coast eclipse for 99 years.

Totality is visible only from within this path as the Moon hides completely the dazzling solar surface, allowing ruddy flame-like prominences to be glimpsed at the solar limb and the pearly corona, the Sun’s outer atmosphere, to be admired at it reaches out into space. At its longest, though, totality lasts for only 2 minutes and 40 seconds so many of those people fiddling with their gadgets to take selfies and the like may be in danger of missing the spectacle altogether.

The surrounding area from which a partial eclipse is visible even extends as far as Scotland. From Edinburgh, this lasts from 19:38 to 20:18 BST but, at most, only the lower 2% of the Sun is hidden at 19:58 as it hangs a mere 4° high in the west. Need I add that the danger of eye damage means that we must never look directly at the Sun – instead project the Sun through a pinhole, binoculars or a small ‘scope, or use an appropriate filter or “eclipse glasses”.

A partial lunar eclipse occurs over the Indian Ocean on the 7th as the southern quarter of the Moon passes through the edge of the Earth’s central dark umbral shadow between 18:23 and 20:18 BST. By the time the Moon rises for Edinburgh at 20:57, it is on its way to leaving the lighter penumbral shadow and I doubt whether we will see any dimming, It exits the penumbra at 21:51.

Our charts show the two halves of the sky around midnight at present. In the north-west is the familiar shape of the Plough while the bright stars Deneb in Cygnus and Vega in Lyra lie to the south-east and south-west of the zenith respectively. These, together with Altair in Aquila in the middle of our southern sky, make up the Summer Triangle. The Milky Way flows through the Triangle as it arches overhead from the south-west to the north-east where Capella in Auriga rivals Vega in brightness.

Of course, many of us have to contend with light pollution which swamps all trace of the Milky Way and we are not helped by moonlight which peaks when the Moon is full on the 7th and only subsides as last quarter approaches on the 15th. New moon comes on the 21st and first quarter on the 29th. The Sun, meantime, slips another 8° southwards during the month as sunrise/sunset times for Edinburgh change from 05:17/21:20 BST on the 1st to 06:15/20:09 on the 31st.

Meteors of the annual Perseids shower, the tears of St Lawrence, are already arriving in low numbers. They stream away from a radiant point in the northern Perseus which stands in the north-east at our map times, between Capella and the W-pattern of Cassiopeia. We spot Perseids in all parts of the sky, though, and not just around Perseus.

Meteor numbers are expected to swell to a peak on the evening of the 12th when upwards of 80 per hour might be counted under ideal conditions. Even though moonlight will depress the numbers seen this time, we can expect the brighter ones still to impress as they disintegrate in the upper atmosphere at 59 km per second, many leaving glowing trains in their wake. The meteoroids concerned come from Comet Swift-Tuttle which last approached the Sun in 1992.

Although Neptune is dimly visible through binoculars at magnitude 7.8 some 2° east of the star Lambda Aquarii, the only naked-eye planet at our map times is Saturn. The latter shines at magnitude 0.3 to 0.4 low down in the south-west as it sinks to set less than two hours later. It is a little higher towards the south at nightfall, though, where it lies below-left of the Moon on the 2nd when a telescope shows its disk to be 18 arcseconds wide and its stunning wide-open rings to span 40 arcseconds. Saturn is near the Moon again on the 29th.

Jupiter is bright (magnitude -1.9 to -1.7) but very low in our western evening sky, its altitude one hour after sunset sinking from 6° on the 1st to only 1° by the month’s end as it disappears into the twilight. Catch it just below and right of the young Moon on the 25th.

Venus is brilliant at magnitude -4.0 in the east before dawn. Rising in the north-east a little after 02:00 BST at present, and an hour later by the 31st, it climbs to stand 25° high at sunrise. Viewed through a telescope, its disk shrinks from 15 to 12 arcseconds in diameter as it recedes from 172 million to 200 million km and its gibbous phase changes from 74% to 83% sunlit.

As Venus tracks eastwards through Gemini, it passes below-right of the star cluster M35 (use binoculars) on the 2nd and 3rd, stands above-left of the waning earthlit Moon on the 19th and around 10° below Castor and Pollux as it enters Cancer a few days later. On the 31st it stands 2° to the right of another cluster, M44, which is also known as Praesepe or the Beehive.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on July 31st 2017, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in January, 2017

Moon between Venus and Mars on the 2nd

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. Arrows depict the motions of Mars during the month and of Venus from the 12th. (Click on map to enlarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. Arrows depict the motions of Mars during the month and of Venus from the 12th. (Click on map to enlarge)

The new year opens with the Moon as a slim crescent in our evening sky, its light insufficient to hinder observations of the Quadrantids meteor shower.

Lasting from the 1st to the 6th, the shower is due to reach its maximum at about 15:00 GMT on the 3rd. Perhaps because of the cold weather, or a lingering hangover from Hogmanay, this may be the least appreciated of the year’s top three showers. It can, though, yield more than 80 meteors per hour under the best conditions, with some blue and yellow and all of medium speed. It can also produce some spectacular events – I still recall a Quadrantids fireball many years ago that flared to magnitude -8, many times brighter than Venus.

Although Quadrantids appear in all parts of the sky, perspective means that their paths stream away from a radiant point in northern Bootes. Plotted on our north map, this glides from left to right low across our northern sky during the evening and trails the Plough as it climbs through the north-east later in the night. The shower’s peak is quite narrow so the optimum times for meteor-spotting are before dawn on the 3rd, when the radiant stands high in the east, and during the evening of that day when Quadrantids may follow long trails from north to south across our sky.

Mars and Venus continue as evening objects, improving in altitude in our south-south-western sky at nightfall and, in the case of Venus, becoming still more spectacular as it brightens from magnitude -4.3 to -4.6. Mars, more than one hundred times fainter, dims from magnitude 0.9 to 1.1 but is obvious above and to Venus’ left, their separation falling from 12° to 5° during the month as they track eastwards and northwards from Aquarius to Pisces.

On the evening of the 1st, Mars stands only 18 arcminutes, just over half a Moon’s breadth, above-left of the farthest planet Neptune though, since the latter shines at magnitude 7.9, we will need binoculars if not a telescope to glimpse it. At the time, Neptune, 4,556 million km away, is a mere 2.2 arcseconds wide if viewed telescopically and Mars appears 5.7 arcseconds across from a range of 246 million km. On that evening, the young Moon lies 8° below and right of Venus, while on the 2nd the Moon stands directly between Mars and Venus. The pair lie close to the Moon again on the 31st.

As its distance falls from 115 million to 81 million km this month, Venus swells from 22 to 31 arcseconds in diameter and its disk changes from 56% to 40% sunlit. In theory, dichotomy, the moment when it is 50% illuminated like the Moon at first quarter, occurs on the 14th. However, the way sunlight scatters in its dazzling clouds means that Venus usually appears to reach this state a few days early when it is an evening star – a phenomenon Sir Patrick Moore named the Schröter effect after the German astronomer who first reported it. Venus stands at its furthest to the east of the Sun, 47°, on the 12th.

The Sun climbs 6° northwards during January and stands closer to the Earth in early January than at any other time of the year. At the Earth’s perihelion at 14:00 GMT on the 4th the two are 147,100,998 km apart, almost 5 million km less than at aphelion on 3 July. Obviously, it is not the Sun’s distance that dictates our seasons, but rather the Earth’s axial tilt away from the Sun during winter and towards it in summer.

Sunrise/sunset times for Edinburgh change from 08:43/15:49 on the 1st to 08:09/16:44 on the 31st. The Moon is at first quarter on the 5th, full on the 12th, at last quarter on the 19th and new on the 28th.

The Moon lies below the Pleiades on the evening of the 8th and to the left of Aldebaran in Taurus on the next night. Below and left of Aldebaran is the magnificent constellation of Orion with the bright red supergiant star Betelgeuse at his shoulder. Soon in astronomical terms, but perhaps not for 100,000 years, Betelgeuse will disintegrate in a supernova explosion.

The relics of a supernova witnessed by Chinese observers in AD 1054 lies 15° further north and just 1.1° north-west of Zeta Tauri, the star at the tip of Taurus’ southern horn. The 8th magnitude oval smudge we call the Crab Nebula contains a pulsar, a 20km wide neutron star that spins 30 times each second.

The conspicuous planet in our morning sky is Jupiter which rises at Edinburgh’s eastern horizon at 01:27 on the 1st and at 23:37 on the 31st. Creeping eastwards 4° north of Spica in Virgo, it brightens from magnitude -1.9 to -2.1 and is unmistakable in the lower half of our southern sky before dawn. Catch it just below the Moon on the 19th when a telescope shows its cloud-banded disk to be 37 arcseconds broad at a distance of 786 million km. We need just decent binoculars to check out the changing positions of its four main moons.

Saturn, respectable at magnitude 0.5, stands low in our south-east before dawn, its altitude one hour before sunrise improving from 3° to 8° during the month. Look to its left and slightly down from the 6th onwards to glimpse Mercury. This reaches 24° west of the Sun on the 19th and brightens from magnitude 0.9 on the 6th to -0.2 on the 24th when the waning earthlit Moon stands 3° above Saturn.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on December 31st 2016, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in November, 2016

Nights begin with Venus and end at Jupiter

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 30th. An arrow depicts the motion of Mars after the first week of the month. (Click on map to enlarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 30th. An arrow depicts the motion of Mars after the first week of the month. (Click on map to enlarge)

The end of British Summer Time means that we now enjoy six hours of official darkness before midnight, though I appreciate that this may not be welcomed by everyone. The starry sky as darkness falls, however, sees only a small shift since a month ago, with the Summer Triangle, formed by the bright stars Vega, Deneb and Altair, now just west of the meridian and toppling into the middle of the western sky by our star map times.

Those maps show the Square of Pegasus high in the south. The star at its top-left, Alpheratz, actually belongs to Andromeda whose other main stars, Mirach and Almach, are nearly equal in brightness and stand level to its left. A spur of two stars above Mirach leads to the oval glow of the Andromeda Galaxy, M31, which is larger than our Milky Way and, at 2.5 million light years, is the most distant object visible to the unaided eye. It is also approaching us at 225 km per second and due to collide with the Milky Way in some 4 billion years’ time.

Binoculars show M31 easily and you will also need them to glimpse more than a handful of stars inside the boundaries of the Square of Pegasus, even under the darkest of skies. In fact, there are only four such stars brighter than the fifth magnitude and another nine to the sixth magnitude, close to the naked eye limit under good conditions. How many can you count?

Mars is the easiest of three bright planets to spot in tonight’s evening sky. As seen from Edinburgh, it stands 11° high in the south as the twilight fades, shining with its customary reddish hue at a magnitude of 0.4, and appearing about half as bright as the star Altair in Aquila, 32° directly above it.

Now moving east-north-eastwards (to the left), Mars is 5° below-right of the Moon on the 6th and crosses from Sagittarius into Capricornus two days later. Soon after this, it enters the region covered by our southern star map, its motion being shown by the arrow. By the 30th, Mars has dimmed slightly to magnitude 0.6 but is almost 6° higher in the south at nightfall, moving to set in the west-south-west at 21:00. It is a disappointingly small telescopic sight, though, its disk shrinking from only 7.5 to 6.5 arcseconds in diameter as it recedes from 188 million to 215 million km.

We need a clear south-western horizon to spy Venus and Saturn, both low down in our early evening twilight. Venus, by far the brighter at magnitude -4.0, is less than 4° high in the south-west thirty minutes after sunset, while Saturn is 4° above and to its right, very much fainter at magnitude 0.6 and only visible through binoculars. The young earthlit Moon may help to locate them – it stands 3° above-right of Saturn on the 2nd and 8° above-left of Venus on the 3rd.

Mercury is out of sight in the evening twilight and Saturn will soon join it as it tracks towards the Sun’s far side. However, Venus’ altitude thirty minutes after sunset improves to 9° by the 30th when it sets for Edinburgh at 18:30 and is a little brighter at magnitude -4.1. Viewed telescopically, Venus shows a dazzling gibbous disk that swells from 14 to 17 arcseconds as its distance falls from 178 million to 149 million km.

Sunrise/sunset times for Edinburgh change from 07:20/16:31 on the 1st to 08:18/15:44 on the 30th. The Moon reaches first quarter on the 7th, full on the 14th, last quarter on the 21 and new on the 28th.

The full moon on the 14th occurs only three hours after the Moon reaches its perigee, the closest point to the Earth in its monthly orbit. As such, this is classed as a supermoon because the full moon appears slightly (7%) wider than it does on average. By my reckoning, this particular lunar perigee, at a distance of 356,509 km, is the closest since 1948 when it also coincided with a supermoon.

Of the other planets, Neptune and Uranus continue as binocular-brightness objects in Aquarius and Pisces respectively in our southern evening sky, while Jupiter, second only to Venus in brightness, is now obvious in the pre-dawn.

Jupiter rises at Edinburgh’s eastern horizon at 04:28 on the 1st and stands more than 15° high in the south-east as morning twilight floods the sky. It outshines every star as it improves from magnitude -1.7 to -1.8 by the 30th when it rises at 03:07 and is almost twice as high in the south-south-east before dawn.

Currently close to the famous double star Porrima in Virgo, Jupiter is 13° above-right of Virgo’s leader Spica and draws 5° closer during the period. Catch it less than 3° to the right of the waning earthlit Moon on the 25th. Jupiter’s distance falls from 944 million to 898 million km during November while its cloud-banded disk is some 32 arcseconds across.

The annual Leonids meteor shower has produced some stunning storms of super-swift meteors in the past, but probably not this year. Active from the 15th to 20th, it is expected to peak at 04:00 on the 17th but with no more than 20 meteors per hour under a dark sky. In fact, the bright moonlight is likely to swamp all but the brightest of these this year. Leonids diverge from a radiant point that lies within the Sickle of Leo which climbs from low in the east-north-east at midnight to pass high in the south before dawn.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on November 1st 2016, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in October, 2016

Mars bright in evenings as ExoMars probe arrives

The maps show the sky at 23:00 BST on the 1st, 22:00 BST (21:00 GMT) on the 16th and at 20:00 GMT on the 31st. Summer time ends at 02:00 BST on the 30th when clocks are set back one hour to 01:00 GMT. (Click on map to enlarge)

The maps show the sky at 23:00 BST on the 1st, 22:00 BST (21:00 GMT) on the 16th and at 20:00 GMT on the 31st. Summer time ends at 02:00 BST on the 30th when clocks are set back one hour to 01:00 GMT. (Click on map to enlarge)

As we plunge into the final quarter of the year, our lengthening nights offer a procession of stellar views that stretch from the Summer Triangle in the evening to the stunning star-scapes around Orion during the morning hours. The brighter planets, though, are on show only low down around dusk and dawn.

The middle of the Summer Triangle stands some 60° high and due south as darkness falls tonight. Its brightest corner star, Vega in the constellation Lyra, lies just south-west of overhead, while Deneb in Cygnus is even higher in the south-east and Altair in Aquila lies below them on the meridian.

With no hindering moonlight over the next few evenings, now is a good time to spy the Milky Way as it arches almost overhead after dusk, climbing from Sagittarius on the south-south-western horizon and flowing through the heart of the Triangle on its way to Deneb and the “W” of Cassiopeia high in the north-east. Of course, unless we can find a dark site, away from the pollution of street lighting and the like, we may have trouble seeing the Milky Way or indeed any but the brighter stars on our chart.

Edinburgh’s sunrise/sunset times change this month from 07:16/18:47 BST (06:16/17:47 GMT) on the 1st to 07:18/16:34 GMT on the 31st after we set clocks back one hour with the end of BST on the morning of the 30th. The Moon is new on the 1st, at first quarter on the 9th, full on the 16th (the hunter’s moon), at last quarter on the 22nd and new again on the 30th.

Venus stands nearly 5° high in the south-west at sunset and sets itself only 43 minutes later on the 1st. By the 31st it is barely a degree higher in the south-south-west at sunset but remains visible for 73 minutes so is easier to spot if we enjoy an unobscured outlook. It blazes at magnitude -3.9 and stands 4° below-right of the slender earthlit Moon on the 3rd when its gibbous disk appears 12 arcseconds wide and 85% sunlit if viewed telescopically.

In the month that the first European-Russian ExoMars spacecraft reaches Mars, the planet is the brightest object low in the south-south-west as the twilight disappears. ExoMars consists of a Trace Gas Orbiter to study rare gases, and particularly methane, in Mars’ atmosphere and it also has the experimental Schiaparelli lander.

Mars fades slightly from magnitude 0.1 (almost equal to Vega) to 0.4 this month as it tracks 21° eastwards above the so-called Teapot of Sagittarius, clipping the top star of the Teapot’s lid (Kaus Borealis) on the 7th. The planet recedes from 160 million to 187 million km during October while its gibbous disk shrinks to 7.5 arcseconds in diameter which, with its low altitude, makes telescopic study all the more challenging. It lies below the Moon on the 8th.

A little fainter than Mars, and a little lower to Mars’ right in this evening’s sky, is the ringed planet Saturn. This shines at magnitude 0.6 in southern Ophiuchus and appears 16 arcseconds across, with its glorious rings spanning 36 arcseconds. Saturn lies to the left of the earthlit Moon on the 5th and dips lower with each evening until it is passed by Venus late in the month – catch Saturn 3° above Venus on the 29th.

By our map times, both Saturn and Mars have set and the Summer Triangle has toppled over into the west. High in the south is the Square of Pegasus, a line along its right-hand side pointing down to the southern bright star Fomalhaut in Piscis Austrinus the Southern Fish. Just to the right of this line, and 2° south-west (below-right) of the star Lambda Aquarii (magnitude 3.7), is the farthest of the Sun’s planets, Neptune. At magnitude 7.8 and a distance of 4,350 million km on the 1st, we need binoculars and a better chart to identify it, and probably a large telescope to glimpse its bluish disk only 2.3 arcseconds wide.

To the east of Aquarius lies the constellation of the two fish, Pisces, and the second most distant planet, Uranus, which stands directly opposite the Sun at opposition on the 15th at a distance of 2,835 million km. At magnitude 5.7 it is near the limit of naked-eye visibility under the darkest of skies, but is an easier binocular or telescope target with its diameter of 3.7 arcseconds.

Orion rises in the east less than two hours after our map times and strides across the meridian before dawn. To its north and east lies Gemini and between the two is the radiant point for the annual Orionids meteor shower. This is visible during our morning hours throughout the second half of the month and peaks at rates around 25 meteors per hour between the 21st and 24th. Its meteors are swift, with many leaving glowing trains in their wake, and represent the dusty debris laid down by Halley’s Comet.

The night ends with Mercury which is conspicuous at magnitude -0.7 and rises in the east 109 minutes before the Sun on the 1st, climbing to stand 9° high forty minutes before sunrise. By the 11th, as its favourable morning show draws to a close, it rises 76 minutes before sunrise. On that morning, the even brighter Jupiter lies only 0.7° below-right of Mercury as the giant planet climbs away from the Sun’s far side. By the 28th, Jupiter rises at about 05:40 BST and is an impressive sight 1.5° below the earthlit waning Moon.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on October 1st 2016, with thanks to the newspaper for permission to republish here.  Journal Editor’s apologies for the lateness of the article appearing here.

Scotland’s Sky in October, 2015

Morning sky holds planetary bonanza

The maps show the sky at 23:00 BST on the 1st, 22:00 BST (21:00 GMT) on the 16th and at 20:00 GMT on the 31st. Summer time ends at 02:00 BST on the 25th when clocks are set back one hour to 01:00 GMT. (Click on map to englarge)

The maps show the sky at 23:00 BST on the 1st, 22:00 BST (21:00 GMT) on the 16th and at 20:00 GMT on the 31st. Summer time ends at 02:00 BST on the 25th when clocks are set back one hour to 01:00 GMT. (Click on map to englarge)

We are well into autumn, yet our sky at nightfall looks much as it did two months ago. The Summer Triangle (Vega, Deneb and Altair) stands high near the meridian and we still have Saturn very low down in the south-west. Shining at magnitude 0.6, and below the young Moon on the 16th, it is tracking eastwards from Libra into Scorpius but we are likely to lose it to the evening twilight later in October.

The hour by hour westwards progress of the stars in the south carries the Triangle into the west and Pegasus to the meridian by our star map times. Taurus in the east and Gemini, just rising, herald the coming of our glorious winter constellations whose leader, Orion, rises another two hours later and is resplendent in the southern sky before dawn. The eastern morning sky also boasts a trio, soon to be a quartet, of planets, including Venus and Jupiter which enjoy a spectacular conjunction on the 26th.

The southern quarter of our sky at our map times is relatively underwhelming. The Square of Pegasus is large, empty and far from striking though one obvious adjoining constellation is Andromeda which extends eastwards, to the left, from the Square’s top-left corner. Indeed, that star, Alpheratz, is now assigned to Andromeda after years with a bigamous classification as both Alpha Andromedae and Delta Pegasi.

Andromeda’s famous galaxy, M31, lies 2.5 million light years away yet is visible as an oval smudge of light to the unaided eye, and is easy to spot using binoculars. Stand by for its collision with our own Milky Way galaxy in another four billion years or so.

Pisces sprawls to the south and east of the Square but is so dim that I often omit it from our chart. The planet Uranus reaches opposition in Pisces on the 12th when it shines at magnitude 5.7 from 2,840 million km. A better chart and binoculars should show it easily, while it is bright enough to be a naked-eye object in a good dark sky.

To its south and west, and scudding westwards below the star Iota in Cetus as shown by the arrow on our chart, is the asteroid Vesta. This stood 214 million km away at opposition on September 28 and dims from magnitude 6.2 to 6.8 during October. A more challenging binocular target is the farthest planet, Neptune, which is magnitude 7.8 and stands 4,377 million km away in Aquarius at mid-month.

The Sun sinks 11° southwards during October as sunrise/sunset times for Edinburgh change from 07:15/18:49 BST (06:15/17:49 GMT) on the 1st to 07:16/16:35 GMT on the 31st after our clocks reset to GMT on the 25th. The Moon is at last quarter on the 4th, new on the 13th, at first quarter on the 20th and full on the 27th. The evening of the 29th sees the waning gibbous Moon occult Aldebaran in Taurus. As seen from Edinburgh, the star winks out at the Moon’s bright limb at 21:57 GMT and reappears at its dark edge at 22:49 – use a telescope.

There is no prize for spotting the brightest planet Venus before dawn, though perhaps we deserve one for observing at such unsocial hours. Venus rises to the north of east as seen from Edinburgh at 03:09 BST on the 1st and 02:36 GMT on the 31st, climbing 33° into the south-east by sunrise. Fading a little from magnitude -4.5 to -4.3, it recedes from 76 million to 110 million km and its dazzling disk shrinks telescopically from 33 to 23 arcseconds in diameter as its phase evolves from 35% to 54% sunlit.

Venus lies above and to the right of Leo’s leading star Regulus at present but slides eastwards to pass 2.6° south of the star on the 9th as it draws closer to the second outstanding morning planet, Jupiter. The latter is barely a tenth as bright as Venus, but remains brighter than the brightest star as it improves from magnitude -1.7 to -1.8 and slips 6° eastwards in southern Leo. Jupiter’s cloud-banded disk appears 32 arcseconds wide in mid-October.

Catch the waning Moon above and to the right of Venus on the 8th, below Venus on the 9th and below Jupiter on the 10th.

Set your alarm early for the morning of the 26th when Venus lies just 1° or two Moon-widths below-right of Jupiter in the year’s most spectacular planetary conjunction. True, the two where even closer together on July 1, but that conjunction occurred with them low in our bright evening twilight while this month’s rendezvous sees than high in the east before dawn. Indeed, it coincides with Venus reaching its furthest angular distance of 46° west of the Sun in the sky.

Much fainter is Mars which moves from 4° below-left of Regulus on the 1st to pass only 0.4° north of Jupiter on the 17th. At magnitude 1.8 to 1.7, it is fainter than Regulus while its orange-hued disk is only 4 arcseconds wide. On the morning of the 31st, Mars sits 1.5° to the left of Venus which, by then, lies 4.5° below-left of Jupiter.

At the beginning of its best morning apparition of 2015, Mercury emerges from the dawn twilight next week to lie low in the east as our fourth predawn planet. Seen from Edinburgh, it rises 90 or more minutes before the Sun from the 10th to the 26th, brightening during that period from magnitude 0.6 to -0.9 and climbing to be 7° to 10° high forty minutes before sunrise. Glimpse it 2.6° below-left of the very slim earthlit Moon on the 11th.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on October 1st 2015, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in October, 2014

Ice giants lurk in our southern sky

The maps show the sky at 23.00 BST on the 1st, 22.00 BST (21.00 GMT) on the 16th and at 20.00 GMT on the 31st. Summer time ends at 02.00 BST on the 26th when clocks are set back one hour to 01.00 GMT.  (Click on map to englarge)

The maps show the sky at 23.00 BST on the 1st, 22.00 BST (21.00 GMT) on the 16th and at 20.00 GMT on the 31st. Summer time ends at 02.00 BST on the 26th when clocks are set back one hour to 01.00 GMT. (Click on map to englarge)

Our October nights are some of the finest for stargazing in the entire year. The temperatures have yet to plumb the bone-chilling depths of winter, but the constellations visible between dusk and dawn include all the highlights of our summer and winter skies. It is just a shame that most of the bright planets are poorly placed at present.

The nights begin with the Summer Triangle high in the south. Formed by the prominent stars Vega in Lyra, Altair in Aquila and Deneb in Cygnus, its stands just to the west of the meridian at nightfall, but tumbles into the west by the star map times. In a dark sky, the diffuse band of the Milky Way flows through it is it arches overhead through Cepheus and Cassiopeia.

Look up in the south at our map times for the large, and largely empty, Square of Pegasus, and very low in the south, less than 5° high for Edinburgh, to find Fomalhaut in Pisces Austrinus, the Southern Fish. A young star only 25 light years away, it is surrounded by disks of dust and probably orbited by two or more planets.

Only two planets are visible at our map times as they lurk to the south of the Square. Uranus and Neptune are plotted on our chart in Pisces and Aquarius respectively, but they are binocular-brightness at magnitude 5.7 and 7.8 and demand more detailed charts, perhaps from the Internet, to identify them. They show tiny bluish disks through a telescope, with Uranus only 3.7 arcseconds wide when it comes to opposition at a distance of 2,845 million km on the 7th, while Neptune is currently 2.3 arcseconds and 1,500 million km further away. Both have ring systems, invisible under normal circumstances, and a plethora of moons.

For decades, these distant worlds have been classed among the gas giants to distinguish them from the smaller rocky planets closer to the Sun. Both are of similar size, some four times wider than Earth, with Uranus being 51,118 km in equatorial diameter and Neptune only 1,600 km smaller. Unlike Jupiter and Saturn, though, they contain a much smaller proportion of raw hydrogen and helium and instead are predominantly composed of the ices of water, methane and ammonia. Indeed, they are more often now classed as ice giants.

Taurus, climbing in the east, is the forerunner of the spectacular constellations of winter centred around Orion. The latter rises below Taurus over the following two hours and is unmistakable in the south before dawn as Sirius, the brightest star, twinkles furiously in the south-south-east.

In northern Orion, 10° to the north-east of Betelgeuse at Orion’s shoulder, lies the radiant point for the Orionids meteor shower which is active in the mornings from the 16th to the 30th. Fast meteors diverge from the point, particularly around the 22nd when numbers may approach 25 per hour under dark moonless skies. The meteoroids were released by Comet Halley.

The Sun sinks another 11° southwards during October as sunrise/sunset times for Edinburgh change from 07:15/18:48 BST (06:15/17:48 GMT) on the 1st to 07:17/16:35 GMT on the 31st. British Summer Time ends at 02:00 BST on the 26th when clocks are set back one hour to 01:00 GMT. Nautical twilight at dawn and dusk persists for a little over 80 minutes.

The Moon is at first quarter on the 1st and full on the 8th when observers around the Pacific, including N America, see a total lunar eclipse. Last quarter occurs on the 15th with new moon on the 23rd which brings a partial solar eclipse visible over most of N America and the north-eastern Pacific. First quarter comes round again on the 31st.

The solitary conspicuous planet is Jupiter but we must wait until the morning hours to see it. The largest of the gas giants shines at magnitude -1.9 as it rises in the east-north-east at about 02:00 BST at present and before 23:30 at the month’s end, climbing high into the south-east and even the south before dawn later in the period. Mid-October sees it slip from Cancer into Leo and by the 31st it has drawn to within 10° of Leo’s main star Regulus. The Moon stands 6° below Jupiter on the 18th when the planet is 35 arcseconds wide and 841 million km away.

Venus may be brilliant at magnitude -3.9 but it rises in the east only 40 minutes before sunrise on the 1st and is soon lost from view as it tracks towards superior conjunction on the Sun’s far side on the 25th. Mercury, though, slips through inferior on the Sun’s near side on the 16th and becomes a morning star during the final week of the month. By the 31st, it rises almost two hours before sunrise and shines at magnitude -0.4 low in the east-south-east.

Saturn and Mars are challenging evening planets just above the south-west horizon as darkness falls. Saturn, magnitude 0.6 in Libra, is lost from view later in the month as it is swallowed by the twilight, though experienced telescope users may be able to observe it being occulted by the young Moon in the late afternoon of the 25th. It is 11° high in Edinburgh’s south-west when it disappears behind the Moon’s eastern edge at 16:55 BST, though since they are 21° to the right of the Sun, caution is advised.

Mars, now well to the left of Saturn, dims from magnitude 0.8 to 0.9 as it tracks eastwards from 4° above Antares in Scorpius. Catch it 6° below the young Moon on the 28th.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on September 30th 2014, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in September, 2014

Mars greets a rival and two new orbiters

The maps show the sky at 23:00 BST on the 1st, 22:00 on the 16th and 21.00 on the 30th.  (Click on map to enlarge)

The maps show the sky at 23:00 BST on the 1st, 22:00 on the 16th and 21.00 on the 30th. (Click on map to enlarge)

The Summer Triangle, formed by the bright stars Vega, Deneb and Altair, still has pride of place high in our southern sky at nightfall. Mars and Saturn are visible on our September evenings, too, but we must look low in the south-west to catch them. Both are well past their best and less interesting telescopic targets than Jupiter which is now resplendent in the east before dawn.

Having swept 3°, or six Moon-widths, to the south of Saturn on 27 August, Mars has a trio of further notable encounters later in September. Two new spacecraft, NASA’s MAVEN and India’s MOM or Mangalyaan, are on course to enter orbit around Mars on the 21st and 24th respectively while the planet is due to pass 3° north of the enormous red supergiant star Antares in Scorpius on the 27th. The name Antares comes from the Ancient Greek for “rival to Mars” and, while they may indeed be similar in brightness by the month’s end, it will be fascinating to see how their colours compare.

Meanwhile, Mars, or rather the spacecraft in orbit around it, are due for a more challenging encounter when the icy nucleus of comet C/2013 A1 Siding Spring sweeps within some 130,000 km of the planet on 19 October. The operators of NASA’s Mars Reconnaissance Orbiter and Mars Odyssey, and of Europe’s Mars Express, are arranging to shield their craft from the worst of the dust storm that is likely to be accompanying the comet, and similar precautions may be needed for MAVEN and MOM.

In other space news, Europe’s Rosetta craft is now studying five potential landing sites for its Philae lander on the nucleus of Comet Churyumov-Gerasimenko. The landing is not due until November, but it is planned to choose a primary and a backup site this month as Rosetta closes to with 30 km of the nucleus.

By our star map times, the Summer Triangle lies just west of our meridian as it gives way to the stars of autumn led by the topsy-turvy winged horse Pegasus whose nose is marked by the star Enif. Use binoculars to look 4° north-west of Enif for the star cluster M15 which appears as a fuzzy blob less than half as wide as the Moon. In fact, it is one of the finest globular clusters in the sky and contains more than 100,000 stars at a distance in excess of 30,000 light years.

The Sun tracks 11.5° southwards in the sky during September and crosses the equator at 03:29 BST on the 23rd, the time of this year’s autumnal equinox. Sunrise/sunset times for Edinburgh change from 06:17/20:07 on the 1st to 07:13/18:51 on the 30th as the duration of nautical twilight at dawn and dusk falls from 89 to 80 minutes.

The Moon is at first quarter on the 2nd, full on the 9th, at last quarter on the 16th and new on the 24th. As the full moon nearest to the equinox, the one on the 9th is also our Harvest Moon and, since it comes less than a day after the Moon is closest to the Earth, it is yet another supermoon.

Saturn stands about 11° high in the south-west and only 0.3° above the northern tip of the crescent Moon as the evening twilight fades on 31 August, with Mars another 4° below and to their left.

On 27 September, the young Moon returns to lie 6° to the right of Saturn which, by then, is 4° lower in the sky and becoming hard to spot in the twilight. Both planets begin the period at magnitude 0.6, but Mars dims slightly to magnitude 0.8 by the 29th when it stands 5° below the Moon and 3° above Antares. It is also 20° to the left of Saturn and drops below Edinburgh’s horizon at 20:51 BST. Viewed through a telescope, Mars is only 6 arcseconds in diameter at midmonth, while Saturn is 16 arcseconds wide within rings that span 36 arcseconds and have their north face tilted 22° towards us.

After Mars and Saturn set, the sky is devoid of bright planets until Jupiter rises more than five hours later. True, Neptune and Uranus are binocular objects at magnitudes of 7.8 and 5.7 in Aquarius and Pisces respectively, but we need better charts to identify them.

There is no mistaking Jupiter, though. The conspicuous giant planet rises at Edinburgh’s east-north-eastern horizon at 03:29 on the 1st and by 02:07 on the 30th. climbing well clear of the eastern to south-eastern horizon by dawn. As it brightens slightly from magnitude -1.8 to -1.9, it also tracks 6° eastwards, below and away from the Praesepe or Beehive star cluster in Cancer. Look for the waning earthlit Moon 6° below and right of Jupiter before dawn on the 20th. Viewed through a telescope on that morning, the cloud-banded Jovian disk is 33 arcseconds across.

Venus is also a morning object and, although it remains brilliant at magnitude -3.9, it is sinking deeper into the twilight as it approaches conjunction on the Sun’s far side in October. On the 1st, it rises 87 minutes before the Sun and stands 14° below and left of Jupiter as it climbs 12° above our eastern horizon by sunrise. Jupiter soon leaves it behind, though, so by the 30th it rises 32 minutes before the Sun and is only 6° high at sunrise. Viewed telescopically, its almost full disk is only 10 arcseconds across.

The other inner planet, Mercury, moves to lie 26° east of the Sun on the 21st, but hugs the western horizon at sunset and is not observable from our latitudes.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on August 29th 2014, with thanks to the newspaper for permission to republish here.