Blog Archives

Scotland’s Sky in May, 2017

Cassini begins Grand Finale at Saturn

The maps show the sky at 01:00 BST on the 1st, midnight on the 16th and 23:00 on the 31st. (Click on map to enlarge)

The maps show the sky at 01:00 BST on the 1st, midnight on the 16th and 23:00 on the 31st. (Click on map to enlarge)

This month brings the final truly dark night skies for Scotland until mid-July or later. Our dwindling nights are dominated by Jupiter, bright and unmistakable as it passes about 30° high in our southern evening sky and sinks to the western horizon before dawn. Venus is brighter still but easily overlooked as it hovers low in our brightening eastern dawn twilight. Saturn is also best as a morning planet, though it rises at our south-eastern horizon a few minutes before our May star map times.

Saturn creeps westwards from the constellation Sagittarius into Ophiuchus this month and brightens a little from magnitude 0.3 to 0.1, making it comparable with the brightest stars visible at our map times – Arcturus, Capella and Vega. The ringed planet, though, climbs to only 12° high in the south by the time morning twilight floods our sky, which is too low for crisp telescopic views of its stunning rings. On the morning of the 14th, as Saturn stands only 3° below-right of the Moon, its rotation-squashed globe measures 18 arcseconds in diameter while its rings stretch across 41 arcseconds and have their northern face tipped at 26° to our view.

Saturn’s main moon, Titan, takes 16 days to orbit the planet and is an easy telescopic target on the ninth magnitude. It stands furthest west of the disk (3 arcminutes) on the 3rd and 19th and furthest east on the 11th and 27th.

The Cassini probe is now into the final chapter, its so-called Grand Finale, of its epic exploration of the Saturn system. On 22 April, it made its 127th and last flyby of Titan, while on 26 April it dived for the first time through the gap between the planet and its visible rings, successfully returning data from a region it has never dared to explore before. Cassini’s new orbit sees it make another 21 weekly dives until, come 15 September, its almost-20 years mission ends with a fiery plunge into the Saturnian atmosphere.

The Sun’s northwards progress during May, to within only 1.4° of its most northerly point at the summer solstice, changes the sunrise/sunset times for Edinburgh from 05:29/20:52 BST on the 1st to 04:36/21:46 on the 31st. The Moon reaches first quarter on the 3rd, full on the 10th, last quarter on the 19th and new on the 25th.

This crescent Moon on the 1st lies in the west, between the stars Pollux in Gemini and Procyon in Canis Minor, lower to its left, while on the 2nd it is 4° below-left of the Praesepe star cluster in Cancer, best viewed through binoculars. It lies near Regulus in Leo on the 3rd and 4th, and appears only 1.2° above the conspicuous Jupiter on the 7th.

The giant planet lies 10° above-right of Virgo’s leading star Spica and edges 2° to the west-north-west this month, drawing closer to the celebrated double star Porrima whose two equal stars orbit each other every 169 years but appear so close together at present that we need a good telescope to divide them.

Following its opposition on 7 April, Jupiter recedes from 678 million to 724 million km during May, dimming slightly from magnitude -2.4 to -2.2 as its diameter shrinks from 43 to 41 arcseconds. Any telescope should show its changing cloud-banded surface while its four main moons may be glimpsed through binoculars, although sometimes one or more disappear as they transit in front of the disk or are hidden behind it or in its shadow.

Some 30° above and to the left of Jupiter is the orange-red giant star Arcturus in Bootes the Herdsman. At magnitude -0.05, this is (just) the brightest star in the northern celestial hemisphere ahead of Capella in Auriga, low in the north-north-west at our map times, and Vega in Lyra, climbing in the east. It is also one of the closer stars to the Sun, but it is only a temporary neighbour for it is speeding by the solar system at 122 km per second at a distance of 36.7 light years. Even so, it takes 800 years to move a Moon’s breadth across our sky. It is also a corner star of a rarely-heralded asterism dubbed the Spring Triangle – the other vertices being marked by Spica and Regulus.

A useful trick for finding Arcturus is to extend a curving line along the handle of the Plough which passes overhead during our spring evenings but is always visible somewhere in our northern sky. That line, still pending, leads to Arcturus and then onwards to Spica. The traditional mnemonic for this is “Arc to Arcturus, spike to Spica” but, given current circumstances, we might amend this to “Arc to Arcturus, jump to Jupiter”.

Venus rises 65 minutes before the Sun on the 1st and climbs to stand 9° high at sunrise. By the 31st, these figures change only a little to 75 minutes and 10°, so it is far from obvious as a morning star, even though it blazes at magnitude -4.5 to -4.3. Through a telescope, it shows a crescent whose sunlit portion increases from 27% to 48% while its diameter shrinks from 38 to 25 arcseconds. Early rises, or insomniacs, can see it left of the waning Moon on the 22nd.

Mercury stands below and left of Venus but remains swamped by our dawn twilight. It is furthest west of the Sun (26°) on the 18th. Still visible, but destined soon to disappear into our evening twilight, is Mars. Shining at a lowly magnitude 1.6, it lies 7° above-right of Aldebaran as the month begins and tracks between the Bull’s horns as Taurus sinks below our north-western horizon in the early evening.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on May 1st 2017, with thanks to the newspaper for permission to republish here.
Advertisements

Scotland’s Sky in November, 2016

Nights begin with Venus and end at Jupiter

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 30th. An arrow depicts the motion of Mars after the first week of the month. (Click on map to enlarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 30th. An arrow depicts the motion of Mars after the first week of the month. (Click on map to enlarge)

The end of British Summer Time means that we now enjoy six hours of official darkness before midnight, though I appreciate that this may not be welcomed by everyone. The starry sky as darkness falls, however, sees only a small shift since a month ago, with the Summer Triangle, formed by the bright stars Vega, Deneb and Altair, now just west of the meridian and toppling into the middle of the western sky by our star map times.

Those maps show the Square of Pegasus high in the south. The star at its top-left, Alpheratz, actually belongs to Andromeda whose other main stars, Mirach and Almach, are nearly equal in brightness and stand level to its left. A spur of two stars above Mirach leads to the oval glow of the Andromeda Galaxy, M31, which is larger than our Milky Way and, at 2.5 million light years, is the most distant object visible to the unaided eye. It is also approaching us at 225 km per second and due to collide with the Milky Way in some 4 billion years’ time.

Binoculars show M31 easily and you will also need them to glimpse more than a handful of stars inside the boundaries of the Square of Pegasus, even under the darkest of skies. In fact, there are only four such stars brighter than the fifth magnitude and another nine to the sixth magnitude, close to the naked eye limit under good conditions. How many can you count?

Mars is the easiest of three bright planets to spot in tonight’s evening sky. As seen from Edinburgh, it stands 11° high in the south as the twilight fades, shining with its customary reddish hue at a magnitude of 0.4, and appearing about half as bright as the star Altair in Aquila, 32° directly above it.

Now moving east-north-eastwards (to the left), Mars is 5° below-right of the Moon on the 6th and crosses from Sagittarius into Capricornus two days later. Soon after this, it enters the region covered by our southern star map, its motion being shown by the arrow. By the 30th, Mars has dimmed slightly to magnitude 0.6 but is almost 6° higher in the south at nightfall, moving to set in the west-south-west at 21:00. It is a disappointingly small telescopic sight, though, its disk shrinking from only 7.5 to 6.5 arcseconds in diameter as it recedes from 188 million to 215 million km.

We need a clear south-western horizon to spy Venus and Saturn, both low down in our early evening twilight. Venus, by far the brighter at magnitude -4.0, is less than 4° high in the south-west thirty minutes after sunset, while Saturn is 4° above and to its right, very much fainter at magnitude 0.6 and only visible through binoculars. The young earthlit Moon may help to locate them – it stands 3° above-right of Saturn on the 2nd and 8° above-left of Venus on the 3rd.

Mercury is out of sight in the evening twilight and Saturn will soon join it as it tracks towards the Sun’s far side. However, Venus’ altitude thirty minutes after sunset improves to 9° by the 30th when it sets for Edinburgh at 18:30 and is a little brighter at magnitude -4.1. Viewed telescopically, Venus shows a dazzling gibbous disk that swells from 14 to 17 arcseconds as its distance falls from 178 million to 149 million km.

Sunrise/sunset times for Edinburgh change from 07:20/16:31 on the 1st to 08:18/15:44 on the 30th. The Moon reaches first quarter on the 7th, full on the 14th, last quarter on the 21 and new on the 28th.

The full moon on the 14th occurs only three hours after the Moon reaches its perigee, the closest point to the Earth in its monthly orbit. As such, this is classed as a supermoon because the full moon appears slightly (7%) wider than it does on average. By my reckoning, this particular lunar perigee, at a distance of 356,509 km, is the closest since 1948 when it also coincided with a supermoon.

Of the other planets, Neptune and Uranus continue as binocular-brightness objects in Aquarius and Pisces respectively in our southern evening sky, while Jupiter, second only to Venus in brightness, is now obvious in the pre-dawn.

Jupiter rises at Edinburgh’s eastern horizon at 04:28 on the 1st and stands more than 15° high in the south-east as morning twilight floods the sky. It outshines every star as it improves from magnitude -1.7 to -1.8 by the 30th when it rises at 03:07 and is almost twice as high in the south-south-east before dawn.

Currently close to the famous double star Porrima in Virgo, Jupiter is 13° above-right of Virgo’s leader Spica and draws 5° closer during the period. Catch it less than 3° to the right of the waning earthlit Moon on the 25th. Jupiter’s distance falls from 944 million to 898 million km during November while its cloud-banded disk is some 32 arcseconds across.

The annual Leonids meteor shower has produced some stunning storms of super-swift meteors in the past, but probably not this year. Active from the 15th to 20th, it is expected to peak at 04:00 on the 17th but with no more than 20 meteors per hour under a dark sky. In fact, the bright moonlight is likely to swamp all but the brightest of these this year. Leonids diverge from a radiant point that lies within the Sickle of Leo which climbs from low in the east-north-east at midnight to pass high in the south before dawn.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on November 1st 2016, with thanks to the newspaper for permission to republish here.