Blog Archives

Scotland’s Sky in June, 2017

Saturn at its best as noctilucent clouds gleam

The maps show the sky at 01:00 BST on the 1st, midnight on the 16th and 23:00 on the 30th. (Click on map to enlarge)

The maps show the sky at 01:00 BST on the 1st, midnight on the 16th and 23:00 on the 30th. (Click on map to enlarge)

The first day of June marks the start of our meteorological summer, though some would argue that summer begins on 21 June when (at 05:25 BST) the Sun reaches its most northerly point at the summer solstice.

Sunrise/sunset times for Edinburgh vary surprisingly little from 04:35/21:47 BST on the 1st, to 04:26/22:03 at the solstice and 04:31/22:02 on the 30th. The Moon is at first quarter on the 1st, full on the 9th, at last quarter on the 17th and new on the 24th.

The Sun is already so far north that our nights remain bathed in twilight and it will be mid-July before Edinburgh sees its next (officially) dark and moonless sky. This is a pity, for the twilight swamps the fainter stars and, from northern Scotland, only the brightest stars and planets are in view.

If we travel south, though, the nights grow longer and darker, and the spectacular Milky Way star fields in Sagittarius and Scorpius climb higher in the south. From London at the solstice, for example, official darkness, with the Sun more than 12° below the horizon, lasts for three hours, while both Barcelona and Rome rejoice in more than six hours.

It is in this same area of sky, low in the south in the middle of the night, that we find the glorious ringed planet Saturn. This stands just below the full moon on the 9th and is at opposition, directly opposite the Sun, on the 15th when it is 1,353 million km away and shines at magnitude 0.0, comparable with the stars Arcturus in Bootes and Vega in Lyra. The latter shines high in the east-north-east at our map times and, together with Altair in Aquila and Deneb in Cygnus, forms the Summer Triangle which is a familiar feature of our nights until late-autumn.

Viewed telescopically, Saturn’s globe appears 18 arcseconds wide at opposition while its rings have their north face tipped 27° towards us and span 41 arcseconds. Sadly, Saturn’s low altitude, no more than 12° for Edinburgh, means that we miss the sharpest views although it should still be possible to spy the inky arc of the Cassini division which separates the outermost of the obvious rings, the A ring, from its neighbouring and brighter B ring.

Other gaps in the rings may be hard to spot from our latitudes – we can only envy the view for observers in the southern hemisphere who have Saturn near the zenith in the middle of their winter’s night. For us, Saturn is less than a Moon’s breadth further south over our next two summers, while the ring-tilt begins to decrease again.

On the other hand, we can sympathize with those southern observers for most of them never see noctilucent clouds, a phenomenon for which we in Scotland are ideally placed. Formed by ice condensing on dust motes, their intricate cirrus-like patterns float at about 82 km, high enough to shine with an electric-blue or pearly hue as they reflect the sunlight after any run-of-the-mill clouds are in darkness. Because of the geometry involving the Sun’s position below our horizon, they are often best seen low in the north-north-west an hour to two after sunset, shifting towards the north-north-east before dawn – along roughly the path taken by the bright star Capella in Auriga during the night.

Jupiter dims slightly from magnitude -2.2 to -2.0 but (after the Moon) remains the most conspicuous object in the sky for most of the night. Indeed, the Moon lies close to the planet on the 3rd – 4th and again on the 30th. As the sky darkens at present, it stands some 30° high and just to the west of the meridian, though by the month’s end it is only half as high and well over in the SW. Our star maps plot it in the west-south-west as it sinks closer to the western horizon where it sets two hours later.

The giant planet is slow-moving in Virgo, about 11° above-right of the star Spica and 3° below-left of the double star Porrima. As its distance grows from 724 million to 789 million km, its disk shrinks from 41 to 37 arcseconds in diameter but remains a favourite target for observers.

The early science results from NASA’s Juno mission to Jupiter were released on 25 May. They reveal the atmosphere to be even more turbulent than was thought, with the polar regions peppered by 1,000 km-wide cyclones that are apparently jostling together chaotically. This is in stark contrast to the meteorology at lower latitudes, where organized parallel bands of cloud dominate in our telescopic views. In addition, the planet’s magnetic field is stronger and more lumpy than was expected. Juno last skimmed 3,500 km above the Jovian clouds on 19 May and is continuing to make close passes every 53 days.

Both Mars and Mercury are hidden in the Sun’s glare this month, the latter reaching superior conjunction on the Sun’s far side on the 21st.

Venus, brilliant at magnitude -4.3 to -4.1, is low above our eastern horizon before dawn. It stands at its furthest west of the Sun in the sky, 46°, on 3 June but it rises only 78 minutes before the Sun and stands 10° high at sunrise as seen from Edinburgh. By the 30th, it climbs to 16° high at sunrise, having risen more than two hours earlier. Between these days, it shrinks in diameter from 24 to 18 arcseconds and changes in phase from 49% to 62% illuminated. It lies left of the waning crescent Moon on the 20th and above the Moon on the following morning.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on May 31st 2017, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in April, 2017

Jupiter rules our April nights

The maps show the sky at midnight BST on the 1st, 23:00 on the 16th and 22:00 on 30th. An arrow shows the motion of Mars during the final week of the month. (Click on map to enlarge)

The maps show the sky at midnight BST on the 1st, 23:00 on the 16th and 22:00 on 30th. An arrow shows the motion of Mars during the final week of the month. (Click on map to enlarge)

Venus dominated our evening sky for the first quarter of 2017, but it is now Jupiter’s turn in the spotlight. The conspicuous giant planet lies directly opposite the Sun in the sky on the 7th so that it rises in the east at sunset, reaches its highest point in the south in the middle of the night and sets in the west at sunrise.

Our charts show it in Virgo to the east of south as Taurus and Orion dip beneath the western horizon and the Plough looms overhead, stretched out of its familiar shape by our map projection. Regulus in Leo is in the south-west and almost level with Arcturus in Bootes in the south-east. Vega in Lyra and Deneb in Cygnus are beginning their climb in the north-east.

Sunrise/sunset times for Edinburgh change from 06:43/19:51 BST on the 1st to 05:31/20:50 on the 30th. The Moon is at first quarter on the 3rd, full on the 11th, at last quarter on the 19th and new on the 26th.

Venus rises only a little more than one hour before sunrise and, though brilliant at magnitude -4.2, may be difficult to spot low in the east before dawn. However, the other inner planet, Mercury, remains nicely placed in the evening and stands furthest east of the Sun (19°) on the 1st.

Thirty minutes after Edinburgh’s sunset on that day, Mercury is 12° high in the west and shines at magnitude 0.0. It should be possible to spy it through binoculars and eventually with the unaided eye as the twilight fades and the planet sinks to set another 96 minutes later. By the 8th, though, it is a couple of degrees lower and a quarter as bright at magnitude 1.6 as it is engulfed by the twilight. Inferior conjunction on the Sun’s near side occurs on the 20th.

Mars, magnitude 1.5 to 1.6 and above and to Mercury’s left at present, tracks east-north-eastwards this month to pass 5° below the Pleiades on the 15th and a similar distance left of the star cluster on the 26th. By then it sets late enough to be plotted near our north-western horizon at the star map times.

Its opposition means that Jupiter is at its brightest and closest, shining more brightly than any star at magnitude -2.5 and a distance of 666 million km. It lies 6° north-west (above-right) of Virgo’s leading star Spica as the month begins and tracks 3.7° westwards during April to pass 10 arcminutes or a third of a Moon’s-width south of the fourth magnitude star Theta Virginis on the 5th.

Jupiter lies close to the full Moon on the night of the 10th-11th when the Jovian disk appears 44 arcseconds wide if viewed telescopically, one fortieth as wide as the Moon.

Jupiter’s clouds are arrayed in bands that lie parallel to its equator, the dark ones called belts and the intervening lighter hued ones called zones. There are numerous whirls and spots, the most famous being the Great Red Spot in the southern hemisphere. The planet spins in under ten hours, so a resolute observer might view the entire span of its clouds in a single April night. The four main moons, visible through decent binoculars and easy through a telescope, lie on each side of the disk and change their configuration from night to night.

The beautiful planet Saturn rises in the south-east less than three hours after our map times and is the brightest object (magnitude 0.4 to 0.3) less than 15° above Edinburgh’s southern horizon before dawn. It is a shame that its low altitude means that we miss the sharpest and most impressive views of it rings which span 39 arcseconds in mid-April, and are tilted at 26° around its 17 arcseconds disk. After appearing stationary on the 6th, Saturn begins to creep westwards against the stars of Sagittarius – look for it below and left of the Moon on the 16th and right of the Moon on the 17th.

It is not often that I advertise the annual Lyrids meteor shower. As one of the year’s lesser displays, it yields only some 18 meteors per hour at best, all of them swift and some leaving glowing trains in their wake as they diverge from a radiant point to the right of Vega. The event lasts from the 18th to the 25th and peaks on the 22nd when moonlight should not interfere unduly this year. The Lyrid meteoroids were released by Comet Thatcher, last seen in 1861.

Bright comets have been rare of late, but fainter ones are observed frequently. One such has the jaunty name of comet 41P/Tuttle–Giacobini–Kresák and takes 5.4 years to orbit between the paths of Jupiter and the Earth. It passes within 21 million km of us on the 1st as it nears perihelion, its closest point to the Sun, on the 12th. I glimpsed it through binoculars from a superb dark-sky site at Kielder Forrest, Northumberland, last week when it was a diffuse seventh magnitude smudge close to Merak, the southern star of the Pointers in the Plough.

Although its path is not depicted on our chart, the comet is poised to sweep close to three of the stars identified in Draco, between the Plough and Polaris, the Pole Star. It passes 0.6° north of Thuban on the night of the 2nd-3rd, 1.5° south-west of Eta on the 11th (sadly, in full moonlight) and 0.6° west of Beta on the 18th-19th. During past perihelia, it has been seen to flare by several magnitudes for a few days at a time, so, if we are lucky, it may reach naked-eye visibility.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on March 31st 2017, with thanks to the newspaper for permission to republish here.