Blog Archives

Scotland’s Sky in December, 2017

Geminid meteors sparkle during long December nights

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to enlarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to enlarge)

December brings us spectacular night skies and arguably the richest meteor shower of the year, the Geminids. We still have the Summer Triangle of bright stars, Vega in Lyra, Deneb in Cygnus and Altair in Aquila, high in the south-west at nightfall while the unmistakable figure of Orion dominates the midnight hours, surrounded by his cohort of familiar winter constellations. By the predawn, the Plough sails overhead and the night’s only conspicuous planets shine to the south of east.

Our longest nights, of course, occur around the winter solstice when the Sun reaches its most southerly point in its annual trek around the sky. This occurs at 16:28 GMT on the 21st when Edinburgh’s night, measured from sunset to sunrise, lasts for 17 hours and 3 minutes, which no less than 10 hours and 39 minutes longer than at June’s summer solstice.

Sunrise/sunset times for Edinburgh during December vary from 08:19/15:44 on the 1st to 08:42/15:40 on the 21st and 08:44/15:48 on the 31st. The Moon is full on the 3rd, at last quarter on the 10th, new on the 18th and at first quarter on the 26th,

By our map times, the Summer Triangle has toppled low into the west and is being followed by the less impressive Square of Pegasus. The Square’s top-left star, Alpheratz, belongs to Andromeda whose other main stars, Mirach and Almach, line up to its left. A spur of fainter stars above Mirach leads us to the Andromeda Galaxy, whose oval glow reaches us from 2.5 million light years away.

Orion is in the east-south-east, his Belt pointing up Aldebaran and the Pleiades in Taurus and down to where the brightest nighttime star, Sirius in Canis Major, rises less than one hour later.

The Moon lies to the right of Aldebaran and below the Pleiades on the night of 2nd-3rd, to the left of Aldebaran a day later and comes around again to occult the star in the early hours of the 31st. We need a telescope to see Aldebaran wink out at the Moon’s limb at 01:01 and reappear at 01:57 as seen from Edinburgh.

It is from a radiant point near Castor in Gemini, north-east of Orion, that meteors from the Geminids shower diverge between the 8th and 17th although, of course, the meteors fly in all parts of the sky. With negligible moonlight this year, and given decent weather, we are in for a stunning display of sparkling long-trailed meteors whose paths point back to the radiant. Rates for an observer under an ideal dark sky could peak at more than 100 per hour at the shower’s peak on the night of the 13th-14th, though most of us may glimpse only a fraction of these.

Although most meteors originate as cometary debris, the Geminids appear to be rocky splinters from the 5 km-wide asteroid, Phaethon, which dives within 21 million km of the Sun every 523 days. In what is its closest approach to the Earth since its discovery in 1983, Phaethon sweeps only 10.3 million km from the Earth on the 16th when a telescope might show it as a tenth magnitude speck speeding past Alpheratz.

December’s second shower, the Ursids, derives from Comet Tuttle and is active between the 17th and 25th, peaking on the 23rd. Typically it yields fewer than ten meteors per hour so I rarely mention it here – I believe my last time was 37 years ago – but very occasionally it rivals the Geminids in intensity, if only for a few hours. The radiant point lies near the star Kochab in Ursa Minor and is plotted on our northern chart.

The unprecedented interstellar asteroid, discovered using a telescope in Hawaii and featured here hast time, has now been called 1I/’Oumuamua. This indicates that it is our first known interstellar visitor and employs the Hawaiian word ’Oumuamua to reflect its supposed status as a scout from the distant past. Further observations imply that it is remarkably elongated, being at least five times longer than it is wide.

Venus shines brilliantly at magnitude -3.9 very low in the south-east as the night ends, but is soon lost from view as it dives towards the Sun’s far side. It leaves Jupiter as our most prominent (magnitude -1.7 to -1.8) morning object. The giant world rises at Edinburgh’s east-south-eastern horizon at 05:31 on the 1st and 04:07 on the 31st, climbing southwards in the sky to stand some 15° high before dawn. Tracking eastwards in Libra, it passes 0.7° north of the celebrated double star Zubenelgenubi on the 21st.

Mars, fainter at magnitude 1.7 to 1.5, lies 16° above-right of Jupiter on the 1st when it is also about half as bright as Virgo’s star Spica, 3° below and to its right. As Mars tracks east-south-eastwards from Virgo to Libra it almost keeps pace with the Sun, so that it rises at around 03:50 throughout the month. By the 31st, it stands 3° from Jupiter, with Zubenelgenubi below and to Mars’ left in the same binocular field of view. The waning Moon forms a nice triangle with Mars and Spica on the 13th and with Mars and Jupiter on the 14th.

Saturn sets in our bright evening twilight as it heads towards conjunction beyond the Sun on the 21st. Mercury slips around the Sun’s near side on the 13th to become best placed as a morning star between Christmas and New Year. Between the 21st and 31st it brightens between magnitude 0.8 and -0.3, rises 100 or more minutes before Edinburgh’s sunrise and stands around 8° high in the south-east thirty minutes before sunrise.

Alan Pickup

This is a slightly revised version of Alan’s article published in The Scotsman on November 30th 2017, with thanks to the newspaper for permission to republish here.
Advertisements

Scotland’s Sky in December, 2016

Geminids suffer in the supermoonlight

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. An arrow depicts the motion of Mars after the first week of the month. (Click on map to enlarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. An arrow depicts the motion of Mars after the first week of the month. (Click on map to enlarge)

The Sun reaches its farthest south at our winter solstice at 10:44 GMT on the 21st, as Mars and the brilliant Venus stand higher in our evening sky than at any other time this year. This is not a coincidence, for both planets are tracking eastwards and, more importantly, northwards in the sky as they keep close to the ecliptic, the Sun’s path over the coming weeks and months. Meantime, Jupiter is prominent during the pre-dawn hours while Orion is unmistakable for most of the night and strides proudly across the meridian at midnight in mid-December.

As the sky darkens this evening, Pegasus with its iconic, but rather empty, Square is nearing the meridian and the Summer Triangle (Vega, Deneb and Altair) stands high in the south-west.

By our map times, Altair is setting in the west and Orion stands in the south-east, the three stars of Belt pointing down to where Sirius, our brightest night-time star, will soon rise. Sirius, the red supergiant Betelgeuse at Orion’s shoulder and Procyon in Canis Minor, almost due east of Betelgeuse, form a near-equilateral triangle which has come to be known as the Winter Triangle.

Above Orion is Taurus, home to the Pleiades star cluster and the bright orange giant star Aldebaran, the latter located less than halfway between us and the V-shaped Hyades cluster.

Look for the almost-full Moon below the Pleiades and to the right of Aldebaran and the Hyades on the evening of the 12th and watch it barrel through the cluster during the night, occulting (hiding) several of the cluster’s stars on the way. As they dip low into the west on the following morning, the Moon occults Aldebaran itself, the star slipping behind the Moon’s northern edge between 05:26 and 05:41 as seen from Edinburgh. Even though this is the brightest star to be occulted this year, the Moon’s brilliance means we may well need a telescope to view the event.

Sunrise/sunset times for Edinburgh vary from 08:20/15:44 on the 1st to 08:42/15:40 on the 21st and 08:44/15:48 on the 31st. The Moon is at first quarter on the 7th and full on the 14th when, once again, it is near its perigee, its closest point to the Earth. Despite the fact that the Moon appears a barely perceptible 7% wider than it does on average, we can look forward to yet another dose of over-hyped supermoon hysteria in the media. The Moon’s last quarter comes on the 21st and it is new on the 29th.

Sadly, the Moon does its best to swamp the annual Geminids meteor shower which lasts from the 8th to the 17th and is expected to peak at about 20:00 on the 13th. Its meteors are medium-slow and, thankfully, there are enough bright ones that several should be noticeable despite the moonlight. Without the moonlight, and under perfect conditions, this might have been our best display of 2016, with 100 or more meteors per hour.

Geminids are visible in all parts of the sky, but perspective makes them appear to diverge from a radiant point near the star Castor in Gemini, marked near the eastern edge of our north map. This radiant climbs from our north-eastern horizon at nightfall to pass high in the south at 02:00.

Venus stands 10° above Edinburgh’s southern horizon at sunset on the 1st and shines spectacularly at magnitude -4.2 as it sinks to set in the south-west almost three hours later. The young earthlit Moon stands 10° above-right of Venus on the 2nd, 5° above the planet on the 3rd and, one lunation later, 20° below-right of the Moon on Hogmanay. By then, Venus is twice as high at sunset and (just) brighter still at magnitude -4.3. A telescope shows its dazzling gibbous disk which swells from 17 to 22 arcseconds in diameter as the sunlit portion shrinks from 68% to 57%.

As Venus speeds from Sagittarius to Capricornus, so Mars keeps above and to its left as it moves from Capricornus into Aquarius and into the region of sky above our south-western horizon at the map times. Mars is only a fraction as bright, though, and fades from magnitude 0.6 to 0.9. It also appears much smaller, only 6 arcseconds, so that telescopes now struggle to reveal any surface features. Spot Mars to the left of the Moon on the 4th and below-right of the Moon on the 5th.

Mercury is farthest east of the Sun, 21°, on the 11th but hugs our south-western horizon at nightfall and is unlikely to be seen. It reaches inferior conjunction between the Sun and Earth on the 28th by which time Saturn, which passes beyond the Sun on the 10th, might just be glimpsed low above the south-eastern horizon before dawn. On the 27th, it shines at magnitude 0.5 and lies 7° below-left of the slender waning Moon.

Jupiter is conspicuous at magnitude -1.8 to -1.9 and the real star of our morning sky. Rising in the east for Edinburgh at 03:04 on the 1st and 01:31 on the 31st, it climbs well up into our southern sky before dawn where it stands above Virgo’s leading star Spica and draws closer during the month.

Jupiter, Spica and the Moon form a neat triangle before dawn on the 23rd, when Jupiter is 850 million km away and appears 35 arcseconds wide through a telescope. Any decent telescope shows its parallel cloud belts, while binoculars reveal its four main moons which swap places from side to side of the disk as they orbit the planet in periods of between 1.8 and 17 days.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on December 1st 2016, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in December, 2015

Get ready for a memorable meteor display

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to englarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to englarge)

Experience tells us that the coldest night of the winter is unlikely to occur during December, but the month does bring our longest ones as the Sun dips to its farthest south at the winter solstice, due this year at 04:48 GMT on the 22nd.

Those long nights begin with Pegasus nearing the meridian but, by our star map times, its famous Square is in the south-west and our eastern sky has been claimed by the sparkling constellations of winter. Orion is unmistakable, his three Belt stars aligned almost vertically and pointing up to Aldebaran in Taurus and on to the Pleiades cluster.

There is another occultation of Aldebaran by the Moon on the 23rd with the star blinking out at the Moon’s limb just before 18:18 as viewed from Edinburgh, and reappearing by 19:15. The Moon’s glare means that we will probably need a telescope to view the event.

Sunrise/sunset times for Edinburgh vary from 08:18/15:44 on the 1st, to 08:42/15:40 on the 22nd and 08:44/15:47 on the 31st. The Moon’s last quarter on the 3rd is followed by new on the 11th, first quarter on the 18th and full on the 25th.

Our evening sky remains devoid of bright planets at present, but the return of the annual Geminids meteor shower is ample compensation. Now regarded as our best meteor display, this is active from the 8th to the 17th with its peak predicted for about 13:00 on the 14th with meteor rates of perhaps 120 per hour for an observer under an ideal dark sky. This is, of course, during our daylight but, unlike some other showers, meteor activity remains high for more than 24 hours and the nights of 13th/14th and 14th/15th could both be memorable. Just be careful to wrap up well to get your fill of long, bright, medium-slow meteors.

The radiant, the point in the sky from which the meteors appear to diverge, is plotted close to the star Castor in Gemini on the eastern side of our North map. Gemini lies north and east of Orion and as Orion marches across our southern sky so the radiant climbs to pass high in the south at 02:00. Remember that the meteors are visible in all parts of the sky, not just near Gemini – it is their streaks that point back to the radiant.

As Orion crosses our meridian some four hours after our map times, so the first bright planet of the night rises in the east. Jupiter brightens further from magnitude -2.0 to -2.2 as it creeps 2° or four Moon-breadths east-south-eastwards in south-eastern Leo, some 20° below and left of the star Regulus.

As the most conspicuous object in the middle of our southern sky before dawn, Jupiter stands just above the Moon on the 4th and to the Moon’s left on the 31st. By the month’s end, it rises more than one hour before midnight and its interesting cloud-banded disk has swollen in diameter from 36 to 39 arcseconds as seen telescopically.

The night’s second naked-eye planet, Mars, lies 20° east-south-east (below-left) of Jupiter and just below the star Porrima in Virgo as the month begins. At magnitude 1.5, but improving to 1.3, it, too, tracks east-south-eastwards to pass 4° north of Spica on the 21st. Look for it close to the waning Moon before dawn on the 6th but don’t expect your telescope to show much if any detail on its tiny 5 arcseconds disk.

The third planet is the brightest of all. Venus climbs above Edinburgh’s eastern horizon at 03:53 on the 1st and, at magnitude -4.2, may still be visible 25° high in the south-south-east at sunrise. It is then 4° north-east of Spica, but it speeds through Virgo and much of Libra so that, by the 31st, it rises in the south-east at 05:26 and is 15° high in the south at sunrise.

As Venus recedes, its gibbous disk shrinks from 17 to 14 arcseconds in diameter. Its motion takes it 2° above Zubenelgenubi in Libra on the 17th and to within a similar distance of the Graffias in Scorpius on the 31st. Venus is occulted for observers over much of N America as it is overtaken by the Moon next Monday.

Saturn, magnitude 0.5, emerges from the morning twilight to hover low in the south-east, below and to the left of Venus, during the final ten days of the year. On those same days, but in the evening, it might just be possible to spot Mercury as it shines at magnitude -0.5 some 5° high in the south-west only 30 minutes after sunset.

Comet 2013 US10 Catalina is likely to be a binocular object as it climbs into our south-eastern sky before dawn. Thought to be an asteroid when it was discovered in 2013, hence its odd name, it was closest to the Sun (123 million km) on November 15 and is due to pass closest to the Earth (108 million km) on January 17. There has been speculation that it might become a naked eye object of the fourth magnitude or better.

However, having spent weeks hidden in the Sun’s glare, it was a disappointing sixth magnitude object when it was recovered a couple of weeks ago. I fear it may not get much better than this, though the fact that it has two, or even three, tails will make for some interesting photographs. From 11° below-left of Venus as the month begins, it tracks almost due northwards to stand only 4° to the right of Venus next Monday (with the Moon nearby) and lie a mere 2° south of the bright star Arcturus in Bootes by the 31st.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on December 1st 2015, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in December, 2014

Jupiter outstanding as the Geminids meteors fly

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to englarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to englarge)

December brings our longest nights of the year and what may be 2014’s richest meteor shower. Indeed, there is an argument for ranking December nights as the most spectacular of the year if only because Orion, and the sparkling constellations that attend him, stand at their highest near the meridian at midnight. Of the bright planets, Jupiter outshines every star and is well placed from mid-evening onwards, but the others are lurking shyly near the Sun and require a little more effort.

Jupiter is unmistakable from the moment it rises in the east-north-east some 35 minutes after our star map times. Improving in brightness from magnitude -2.3 to -2.5 this month, it climbs to pass high in the south and onwards into the south-west before dawn. We find it in Leo, to the right of the Sickle and less than 8° above-right of Regulus. It is here that it reaches a stationary point on the 9th before beginning a westerly motion which carries it back into Cancer just a day before its opposition in early February.

With its large disk and changing cloud-patterns, Jupiter is always an rewarding telescopic sight while the motions from side to side of its four main moons may be followed using nothing more than decent binoculars. When Jupiter lies near the Moon on the night of the 11th-12th, it is 717 million km distant and its globe appears 41 arcsec in diameter.

Orion stands clear of the horizon in the east-south-east at the map times. Its main stars, the blue-white supergiant Rigel at Orion’s knee and the contrasting red supergiant Betelgeuse at his shoulder, are among the ten brightest. the trio of stars between them form Orion’s Belt while hanging below the Belt is Orion’s Sword and the fuzzy glow of the Orion Nebula where new stars and planets are forming, albeit slowly, before our eyes.

A line upwards along the Belt extends to Aldebaran (close to the Moon on the 5th-6th) and onwards to the Pleiades or Seven Sisters star cluster. Carry the line downwards towards Sirius which rises one hour after our map times and is our brightest star after the Sun.

North and east (above-left) of Orion lies Gemini with its twins Castor and Pollux, while close to Castor (see chart) is the radiant point for the annual Geminids meteor shower. Bright medium-slow meteors streak in all parts of the sky between the 8th and 17th but all radiate away from this point as they follow parallel paths into the upper atmosphere. The radiant climbs from the north-north-east horizon at nightfall to pass high in the south at about 02:00. Meteor rates are expected to be highest during the 24 hours around 07:00 on the morning of the 14th when more than 80 Geminids per hour might be counted under ideal conditions. The Moon is much less obtrusive than during the Geminids last year.

The Square of Pegasus crosses the high meridian in the early evening and shifts to the south-west by our map times as Andromeda stretches up from its upper-left corner. High in the south are the two smaller constellations of Triangulum the Triangle and Aries the Ram. Aries’ main star, Hamal, is identical in brightness to Polaris, the Pole Star, but lies perhaps five times closer to us at 66 light years, It also appears to have a planet that is larger than Jupiter and takes 381 days to orbit at a distance slightly greater than that between the Earth and the Sun.

Aries also gives its name to the celestial counterpart of the Greenwich meridian. Longitudes in the sky are measured eastwards from the so-called First Point of Aries where the Sun crosses the sky’s equator at the spring or vernal equinox. When the Greek astronomer Hipparchus assigned the name more than two thousand years ago this point was located in Aries. However, the Earth wobbles on its axis over a period of 26,000 years with the result that the First Point of Aries has slipped more than 30° westwards against the stars and now lies to the south of the Square of Pegasus in the dim constellation of Pisces.

The Sun is furthest south in the sky at 23:03 GMT on the 21st, the moment of our winter solstice. Sunrise/sunset times for Edinburgh change from 08:19/15:44 on the 1st, to 08:43/15:40 on the 21st and 08:44/15:48 on the 31st. Nautical twilight persists for around 94 minutes at dawn and dusk. The Moon is full on the 6th, at last quarter on the 14th, new on the 22nd and at first quarter on the 28th.

Mars, the best of the planets after Jupiter, is the brightest object low in the south-south-west at nightfall and climbs a little higher from night to night as it slides northwards in relation to the Sun. It does, though, dim from magnitude 1.0 to 1.1 as it tracks eastwards through Capricornus. It sets at about 19:15 and stands left of the young earthlit Moon on Christmas Eve.

By mid-month, and provided we have a clear south-western horizon, we may be able to spot the brilliant (magnitude -3.9) evening star Venus just after sunset. At Hogmanay, Venus stands 6° high at sunset and sets itself 76 minutes later. Mercury slips around the Sun’s far side on the 8th and is destined to join Venus as an evening star in the New Year.

Saturn is emerging as a pre-dawn object low in the south-east where it shines at magnitude 0.5 as it tracks from Libra into Scorpius. Catch it 7° below-left of the waning Moon on the 19th.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on November 28th 2014, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in December, 2013

Comet ISON – probably not the Comet Of The Century

2013_Dec_ase

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. Arrows depict the motion of Jupiter and, later in the month, of Comet ISON. (Click on map to enlarge)

Comet ISON swept through its perihelion within 1,165,000 km of the Sun’s surface at about 18:38 GMT on 28 November, but did it even make it that far in one piece? There have been signs that its brightening was halting again and perhaps that its icy nucleus might be breaking up even before it encountered the extreme heat and tidal forces of perihelion. In my view, sensationalist claims that ISON would be the Comet Of The Century, visible in broad daylight and an unmistakable spectacle in our night sky, are about to be proved wrong. While I am duty-bound to speculate on its appearance as it emerges from the Sun’s glare, no-one knows exactly what if anything we will see.

After a disappointing few months, a sudden surge in ISON’s activity and brightness began on 13 November. I glimpsed it through binoculars three days later and it continued to brighten as it dived lower in our south-eastern pre-dawn sky, first passing the star Spica in Virgo and then Mercury, by which time it was near the fourth magnitude and disappearing into the twilight. Since then we have relied mainly on observations from spacecraft. Claims that it may have stopped brightening as the production of gas and dust from its nucleus fell dramatically, and even that the nucleus was already disintegrating, painted a pessimistic picture. However, the mood changed when ISON appeared to be remarkably healthy and intact in the final hours before perihelion.

Even if the nucleus does shatter, it may not spell the end of ISON as an interesting object. Its gas and dust has to go somewhere, and that may lead to the comet’s tail remaining visible, and possibly brightly so. Don’t miss any opportunity to look for it stretching almost vertically above our east-south-eastern horizon before dawn over the coming few days, perhaps beginning as early as 1 December. It may also be glimpsed reaching up and to the right from our western horizon after sunset.

The comet’s head and nucleus, assuming it survives, tracks almost due northwards in the sky, climbing steeply in the east before dawn and heading to a position halfway between the bright stars Vega and Arcturus on the 21st. Our “Looking North” chart picks up ISON at this point and depicts its progress onwards and upwards into Draco by the year’s end. It is closest to the Earth, 64 million km, on the 26th but will it still be visible at Christmas?

Even if ISON fails miserably, our December nights are a treat to behold. They begin with Venus blazing low down between the south and south-west as it sinks from about 10° high at sunset. The planet is at its brilliant best, magnitude -4.7, as it stands 7° below-left of the young Moon on the 5th and 12° below-right of the Moon on the 6th. By Hogmanay it sets 105 minutes after the Sun as seen from Edinburgh and is 59 arcseconds in diameter, near enough (42 million km) and large enough for its slender 4% illuminated crescent to be recognised easily through binoculars, and perhaps by the keenest naked eyes.

Our second prominent planet, Jupiter, rises at Edinburgh’s north-eastern horizon at 18:21 GMT on the 1st and only 16 minutes after sunset by the 31st. Conspicuous in the east at our map times, it passes high in the south six hours later and is sinking in the west before dawn. Jupiter lies some 9° below and right of Castor and Pollux in Gemini and is slowly retrograding (tracking westwards) to pass only 0.25° north of the third magnitude star Wasat or Delta Geminorum on the 10th. Telescopically, the Jovian globe swells from 45 to 47 arcseconds as the planet approaches opposition in early January.

Orion, stands to the south of east at our map times, and is impressive as it climbs to cross the meridian during the midnight hours. A line upwards along Orion’s Belt extends to Aldebaran and the Pleiades in Taurus. Look for the Moon close to Aldebaran on the night of the 15th and near Jupiter on the 18th.

Mars rises in the east at 01:00 on the 1st and 30 minutes earlier on the 31st. Tracking eastwards against the stars of Virgo, it improves from magnitude 1.2 to 0.8 this month as its disk swells from 5.6 to 6.8 arcseconds in diameter – still too small for surface detail to be seen easily through a telescope. Look for Mars above the Moon on Boxing Day morning. Our second morning planet, Saturn, lies in Libra and rises in the east-south-east at about 06:00 at present. By year’s end, though, it rises at 04:20 and shines at magnitude 0.6, making it the brightest object low in the south-east to south before dawn. Catch it above-right of the waning Moon on the 29th.

Only a few days before the end of its best apparition of 2013, Mercury shines brightly at magnitude -0.7 and stands almost 5° high in the south-east forty minutes before sunrise tomorrow.

The annual Geminids meteor shower is active from the 8th to the 17th and is expected to peak in the predawn hours on the 14th. The bright moonlight for most of the night may still allow several slow bright Geminids meteors to be seen as they stream away from a radiant point close to Castor, roughly where the M of GEMINI lies on our north star map.

The Sun reaches its most southerly point in our sky at 17:11 GMT on the 31st, marking the winter solstice. Sunrise/sunset times for Edinburgh vary from 08:19/15:44 on the 1st to 08:42/15:40 on the 21st and 08:44/15:48 on the 31st. Nautical twilight persists for about 95 minutes at dawn and dusk. The Moon is new on the 3rd, at first quarter on the 9th, full on the 17th and last quarter on the 25th.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on November 29th 2013, with thanks to the newspaper for permission to republish here.