Blog Archives

Scotland’s Sky in April, 2019

Galaxy clusters of interest in April’s southern evening sky

The maps show the sky at midnight BST on the 1st, 23:00 on the 16th and 22:00 on 30th. An arrow depicts the motion of Mars. (Click on map to enlarge)

The maps show the sky at midnight BST on the 1st, 23:00 on the 16th and 22:00 on 30th. An arrow depicts the motion of Mars. (Click on map to enlarge)

Orion stands in the south-west at nightfall as the sparkling skies of winter give way to the less flamboyant constellations of spring, led by Leo and Virgo. By our map times, Orion has mostly set the west and the Milky Way arcs only some 30° above Edinburgh’s north-western horizon as it flows between Auriga and the “W” formation of Cassiopeia.

The Milky Way, of course, marks the plane of our disk-shaped galaxy, itself dubbed the Milky Way, around which our Sun orbits every 240 million years. If we look along it, we encounter numerous distant stars but countless more are forever hidden from sight behind intervening clouds of gas and dust – the raw material from which new stars and planets may eventually coalesce. If we gaze in directions away from the plane of the Milky Way, though, the star numbers fall away and there is negligible gas and dust to hide our view of galaxies far beyond our own.

It follows that we might expect our best view of the distant universe to be in directions at right angles to the plane, towards the galactic poles. Regions around the North Galactic Pole are ideally placed in our April evening sky and host some of the most interesting clusters of galaxies in the entire sky.

The pole itself lies in the less-than-startling Coma Berenices which is approaching the high meridian at our map times. As the only modern constellation named for a historic person, this celebrates Queen Berenice II of Egypt who is said to have sacrificed her long hair as an offering to Aphrodite. Her tresses are represented by a cascade of stars that spill southwards through the “M” of “COMA” on the chart. These make up a dispersed but nearby star cluster at a distance of about 280 light years – the second closest star cluster after the Hyades in Taurus.

Roughly coincident with the “C” of “COMA” is another cluster, but this one of more than 1,000 galaxies at a distance of some 320 million light years. The Coma Cluster’s brightest galaxies are only around the twelfth magnitude and, as such, a challenge for many amateur telescopes. It was by studying this cluster that the Swiss astronomer Fritz Zwicky uncovered evidence as long ago as 1933 for the existence of what we now call dark matter. He found its galaxies were simply moving too fast to be held together unless addition material was present to supply an extra gravitational pull. Now we suspect that up to 90% of the Coma Cluster consists of this still-mysterious dark matter.

Lying south of Coma Berenices, and about 9° to the east (left) of Leo’s star Denebola, is the closer Virgo Cluster of galaxies. This sprawls across 8° of sky and holds about 1,500 galaxies at a distance of 54 million light years or so. Small telescopes show several, though we’d struggle to locate them without a better chart than I can supply here. In fact, The Virgo Cluster lies at the heart of a much larger family of galaxies and galaxy clusters dubbed the Virgo Supercluster which includes the so-called Local Group of galaxies in which the Milky Way is a major player. The Coma Cluster rules another supercluster.

Edinburgh’s sunrise/sunset times change from 06:44/19:50 BST on the 1st to 05:32/20:49 on the 30th as the Moon stands at new on the 5th, first quarter on the 12th, full on the 19th and last quarter on the 26th. As I mentioned last time, satellites may now be spotted at any time of night though the current spell of evening passes by the International Space Station ends on or about the 5th.

Mars stands some 30° high and alongside the Pleiades in our western sky as our nights begin at present. The planet, though, is tracking east-north-eastwards against the stars and passes north of Taurus’ main star, Aldebaran, to lie between the Bull’s horns later in the month. The young earthlit Moon is an impressive sight 9° below Mars on the 8th and stands above Aldebaran and to the left of Mars on the 9th.

Mars no longer glares like an orange beacon in our sky and is now only half as bright as Aldebaran. As its distance grows from 302 million to 335 million km in April, it dims a little more from magnitude 1.5 to 1.6. Even large telescopes reveal little detail on its small ochre disk, less than 5 arcseconds in diameter, and viewing conditions can only deteriorate as it sinks towards the north-western horizon where it sets in the middle of the night.

There are two brighter planets in our predawn sky, both of them low in the south to south-east as the Summer Triangle formed by Vega, Deneb and Altair climbs through the east.

Jupiter, conspicuous at magnitude -2.2 to -2.5, rises in the south-east less than three hours after our map times and stands 11° above Edinburgh’s southern horizon before dawn. Slow-moving in southern Ophiuchus, it reaches a stationary point on the 10th when its motion appears to reverse from easterly to westerly as it begins to be overtaken by the Earth. Saturn, rather fainter at magnitude 0.6 to 0.5 and at its own stationary point on the 30th, lies in Sagittarius some 25° to Jupiter’s left. Catch the Moon near Jupiter on the 23rd and Saturn on the 25th.

Although Venus is brilliant at magnitude -4.0, it rises in the east less than 38 minutes before sunrise and is unlikely to be noticed. Mercury is furthest west of the Sun (28°) on the 11th but is much fainter and lower still in the morning twilight.

Diary for 2019 April

Times are BST

2nd           05h Moon 2.7° S of Venus

3rd            00h Moon 4° S of Mercury

5th           10h New moon

9th           08h Moon 5° S of Mars

9th           17h Moon 2.1° N of Aldebaran

10th         18h Jupiter stationary (motion reverses from E to W)

11th         21h Mercury furthest W of Sun (28°)

12th         20h First quarter

13th         22h Moon 0.1° N of Praesepe

15th         10h Moon 2.8° N of Regulus

16th         23h Mars 7° N of Aldebaran

19th         12h Full moon

23rd         00h Uranus in conjunction with Sun

23rd         13h Moon 1.6° N of Jupiter

25th         15h Moon 0.4° S of Saturn

26th         23h Last quarter

30th         03h Saturn stationary (motion reverses from E to W)

Alan Pickup

This is a slightly revised version, with added diary, of Alan’s article published in The Scotsman on March 30th 2019, with thanks to the newspaper for permission to republish here.
Advertisements

Scotland’s Sky in March, 2019

Watch earth satellites transit our vernal equinox sky

The maps show the sky at 23.00 GMT on the 1st, 22.00 GMT on the 16th and 21.00 GMT (22.00 BST) on the 31st. Summer time begins at 01.00 GMT on the 31st when clocks go forward one hour to 02.00 BST. An arrow depicts the motion of Mars from the 7th. (Click on map to enlarge)

The maps show the sky at 23.00 GMT on the 1st, 22.00 GMT on the 16th and 21.00 GMT (22.00 BST) on the 31st. Summer time begins at 01.00 GMT on the 31st when clocks go forward one hour to 02.00 BST. An arrow depicts the motion of Mars from the 7th. (Click on map to enlarge)

The Sun climbs northwards at its fastest for the year in March and crosses the sky’s equator at 21:58 on the 20th, the time of our vernal or spring equinox. As the days lengthen rapidly, the stars in the evening sky appear to drift sharply westwards so that Orion, which is astride the meridian as the night begins on the 1st, stands 45° over in the south-west by nightfall on the 31st.

Another consequence of the Sun’s motion is that the Earth’s shadow, on the night side of the planet, is tilting increasingly southwards so that it no longer reaches so far above Scotland at midnight. Indeed, by the end of March the shadow is shallow enough that satellites passing a few hundred kilometres above our heads may be illuminated by the Sun at any time of night. This allows them to appear as moving points of light against the stars as they take a few minutes to cross the sky. Some are steady in brightness while others pulsate or flash as they tumble or spin in orbit.

Dozens of satellites are naked-eye-visible every night, while many times this number may be glimpsed through binoculars. Predictions of when and where to look, including plots of their tracks against the stars, may be obtained online for free, or example from heavens-above.com, or via smartphone apps. Of particular interest are the so-called Iridium satellites which can outshine every other object in the sky, bar the Sun and Moon, during brief flares when their orientation to the Sun and the observer is just right. Although online predictions also include these, Iridium flares are falling rapidly in frequency since the satellites responsible are being deorbited as they are replaced by 2nd generation (and non-flaring) craft.

The most obvious steadily-shining satellite is, of course, the International Space Station which can outshine Sirius as it transits up to 40° high from west to east across Edinburgh’s southern sky. As it orbits the Earth every 93 minutes at a height near 405 km, it is visible before dawn until about the 15th and begins a series of evening passes a week later.

Sunrise/sunset times for Edinburgh change from 07:05/17:46 GMT on the 1st to 05:47/18:48 GMT (06:47/19:48 BST) on the 31st which is the day that we set our clocks to British Summer Time.

The Moon is new on the 6th and spectacular over the following days as its brightly earthlit crescent stands higher each evening in the west-south-west. Catch the Moon 12° below Mars on the 10th and 6° below and left of the planet on the 11th. Mars itself stands around 30° high in the west-south-west at nightfall and is well to the north of west when it sets before midnight. This month it dims from magnitude 1.2 to 1.4 as it speeds more than 20° north-eastwards from Aries into Taurus to end the period only 3° below-left of the Pleiades.

Mercury has been enjoying its best spell of evening visibility this year, but is now fading rapidly and may be lost from view by the 7th. Binoculars show it shining at magnitude 0.1 on the 1st as it stands 10° directly above the sunset position forty minutes after sunset.

The Moon and planets never stray far from the ecliptic, the line around the sky that traces the apparent path of the Sun during our Earth’s orbit. The ecliptic slants steeply across our south-west at nightfall towards the Sun’s most northerly point which it reaches to the north of Orion at our summer solstice in June.

Given a clear dark evening, this is the best time of year to spy a broad cone of light stretching along the ecliptic from the last of the fading twilight. Dubbed the zodiacal light, this glow comes from sunlight scattering from interplanetary dust particles and was the subject on which Brian May, the lead guitarist of Queen, gained his doctorate.

As the Moon continues around the sky, it reaches first quarter on the 14th and passes just north of the star Regulus in Leo on the night of the 18/19th. Regulus, 45° high on Edinburgh’s meridian at our map times, lies less than a Moon’s breadth above the ecliptic and marks the handle of the Sickle of Leo.

Algieba in the Sickle is a splendid binary whose contrasting orange and yellow component stars lie 4.7 arcseconds apart and may be separated telescopically as they orbit each other every 510 years or so. The larger of the pair has at least one companion which may be a planet much larger than Jupiter or, perhaps, a brown dwarf star.

Between full moon on the 21st and last quarter on the 28th, the Moon passes very close to the conspicuous planet Jupiter on the 27th. The giant planet rises in the south-east in the small hours and is unmistakable at magnitude -2.0 to -2.2 low in the south before dawn where it is creeping eastwards against the stars of southern Ophiuchus.

The red supergiant star Antares in Scorpius lies some 13° to the right of Jupiter while Saturn, fainter at magnitude 0.6, is twice this distance to Jupiter’s left and lower in the twilight. Look for Saturn to the Moon’s left on the 1st and just above the Moon on the 29th.

Venus is brilliant (magnitude -4.1) but becoming hard to spot very low down in our morning twilight. More than 10° to the left of Saturn as the month begins and rushing further away, it rises in the south-east 81 minutes before sunrise tomorrow and only 39 minutes before on the 31st.

Diary for 2019 March

1st           18h Moon 0.3° N of Saturn

2nd          21h Moon 1.2° S of Venus

6th           16h New moon

7th           01h Neptune in conjunction with Sun

11th         12h Moon 6° S of Mars

13th         11h Moon 1.9° N of Aldebaran

14th         10h First quarter

15th         02h Mercury in inferior conjunction

17th         13h Moon 0.1° S of Praesepe

19th         00h Moon 2.6° N of Regulus

20th         21:58 Vernal equinox

21st         02h Full moon

27th         02h Moon 1.9° N of Jupiter

28th         04h Last quarter

29th         05h Moon 0.1° S of Saturn

30th         10h Mars 3° S of Pleiades

31st         01h GMT = 02h BST Start of British Summer Time

Alan Pickup

This is a slightly revised version, with added diary, of Alan’s article published in The Scotsman on February 28th 2019, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in February, 2019

Orion and Winter Hexagon in prime-time view

The maps show the sky at 22:00 GMT on the 1st, 21:00 on the 15th and 20:00 on the 28th. An arrow depicts the motion of Mars. (Click on map to enlarge)

The maps show the sky at 22:00 GMT on the 1st, 21:00 on the 15th and 20:00 on the 28th. An arrow depicts the motion of Mars. (Click on map to enlarge)

Even though the two brightest planets, Venus and Jupiter, hover low in the south-east before dawn, the shortest month brings what many consider to be our best evening sky of the year. After all, the unrivalled constellation of Orion is in prime position in the south, passing due south for Edinburgh one hour before our star map times. Surrounding it, and ideally placed at a convenient time for casual starwatchers, are some of the brightest stars and interesting groups in the whole sky.

I mentioned some of the sights in and around Orion last time, including the bright stars Procyon, Betelgeuse and Sirius which are prominent in the south at the map times and together form the Winter Triangle.

Like the Summer Triangle, this winter counterpart is defined as an asterism which is a pattern of stars that do not form one of the 88 constellations recognised by the International Astronomical Union. Both triangles are made up of stars in different constellations, but we also have asterisms that lie entirely within a single constellation, as, for example, the Sickle of Leo which curls above Regulus in the east-south-east at our map times, and the Plough which comprises the brighter stars of the Ursa Major, the Great Bear, climbing in the north-east.

Yet another asterism, perhaps the biggest in its class, includes the leading stars of six constellations and re-uses two members of the Winter Triangle. The Winter Hexagon takes in Sirius, Procyon, Pollux in Gemini and Capella in Auriga which lies almost overhead as Orion crosses the meridian. From Capella, the Hexagon continues downwards via Aldebaran in Taurus and Rigel at Orion’s knee back to Sirius.

Edinburgh’s sunrise/sunset times change from 08:08/16:45 on the 1st to 07:07/17:44 on the 28th. The Moon is new on the 4th and at first quarter on the 12th when it stands 12° below the Pleiades in our evening sky. The 13th sees it gliding into the Hyades, the V-shaped star cluster that lies beyond Aldebaran. Both the Pleiades and the Hyades are open clusters whose stars all formed at the same time. Another fainter cluster, Praesepe or the Beehive in Cancer, is visible through binoculars to the left of the Moon late on the 17th. Full moon is on the 19th with last quarter on the 26th.

A number of other open star clusters lie in the northern part of the Hexagon, two of them plotted on our chart. At the feet of Gemini and almost due north of Betelgeuse is M35, visible as a smudge to the unaided eye but easy though binoculars and telescopes which begin to reveal its brighter stars. It lies 3,870 ly (light years) away, as compared with 440 ly for the Pleiades and 153 ly for the Hyades. Further north in Auriga is the fainter M37 (4,500 ly) which binoculars show 7° north-east of Elnath, the star at the tip of the upper horn of Taurus. M36 (4,340 ly) and M38 (3,480 ly) lie from 4° and 6° north-west of M37.

Mars dims a little from magnitude 0.9 to 1.2 but remains the brightest object near the middle of our south-south-western evening sky, sinking westwards to set before midnight. Mars is 241 million km distant when it stands above the Moon on the 10th, with its reddish 5.8 arcseconds disk now too small to show detail through a telescope. As it tracks east-north-eastwards against the stars, it moves from Pisces to Aries and passes 1° above-right of the binocular-brightness planet Uranus (magnitude 5.8) on the 13th.

The usually elusive planet Mercury begins its best evening apparition of 2019 in the middle of the month as it begins to emerge from our west-south-western twilight. Best glimpsed through binoculars, it stands between 8° and 10° high forty minutes after sunset from the 21st and sets itself more than one hour later still. It is magnitude -0.3 on the 27th when it lies furthest from the Sun in the sky, 18°, and its small 7 arcseconds disk appears 45% illuminated.

Venus, brilliant at magnitude 4.3, rises for Edinburgh at 05:11 on the 1st and stands 8° high by 06:30 as twilight begins to invade the sky. That morning also finds it 6° above and right of the waning earthlit Moon. A telescope shows Venus to be 19 arcseconds in diameter and 62% sunlit.

Jupiter is conspicuous 9° to the right of, and slightly above, Venus on the 1st though it is one ninth as bright at magnitude -1.9. Larger and more interesting through a telescope, its 34 arcseconds disk is crossed by bands of cloud running parallel to its equator while its four main moons may be glimpsed through binoculars. Edging eastwards (to the left) in southern Ophiuchus, it is 9° east of the celebrated and distinctly red supergiant star Antares in Scorpius, a star so big that it would engulf the Earth and Mars if it switched places with our Sun.

Our third predawn planet, Saturn rises at 06:38 on the 1st and is more of a challenge being fainter (magnitude 0.6) in the twilight. One hour before Edinburgh’s sunrise on the 2nd, it lies only 2° above the horizon and less than 10 arcminutes above-right of the Moon’s edge. Watchers in south-eastern England see it slightly higher and may glimpse it emerge from behind the Moon at about 06:31.

Venus speeds eastwards through Sagittarius to pass 1.1° north of Saturn on the 18th and shine at magnitude -4.1 even lower in the morning twilight by the month’s end. By then, the Moon has come full circle to stand above-right of Jupiter on the 27th and to Jupiter’s left on the 28th.

Diary for 2019 February

2nd          07h Moon 0.6° N of Saturn

4th           21h New moon

10th         16h Moon 6° S of Mars

12th         22h First quarter

13th         20h Mars 1.1° N of Uranus

14th         04h Moon 1.7° N of Aldebaran

18th         03h Moon 0.3° S of Praesepe

18th         14h Venus 1.1° N of Saturn

19th         13h Moon 2.5° N of Regulus

19th         16h Full moon

26th         11h Last quarter

27th         01h Mercury furthest E of Sun (18°)

27th         14h Moon 2.3° N of Jupiter

Alan Pickup

This is a slightly revised version, with added diary, of Alan’s article published in The Scotsman on January 31st 2019, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in January, 2019

Rise early for a total lunar eclipse on the 21st

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. An arrow depicts the motion of Mars. (Click on map to enlarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. An arrow depicts the motion of Mars. (Click on map to enlarge)

Any month that has the glorious constellation of Orion in our southern evening sky is a good one for night sky aficionados. Add one of the best meteor showers of the year, a total eclipse of the Moon, a meeting between the two brightest planets and a brace of space exploration firsts and we should have a month to remember

Orion rises in the east as darkness falls and climbs well into view in the south-east by our star map times. Its two leading stars are the blue-white supergiant Rigel at Orion’s knee and the contrasting red supergiant Betelgeuse at his opposite shoulder – both are much more massive and larger than our Sun and around 100,000 times more luminous.

Below the middle of the three stars of Orion’s Belt hangs his Sword where the famous and fuzzy Orion Nebula may be spied by the naked eye on a good night and is usually easy to see through binoculars. One of the most-studied objects in the entire sky, it lies 1,350 light years away and consists of a glowing region of gas and dust in which new stars and planets are coalescing under gravity.

The Belt slant up towards Taurus with the bright orange giant Aldebaran and the Pleiades cluster as the latter stands 58° high on Edinburgh’s meridian. Carry the line of the Belt downwards to Orion’s main dog, Canis Major, with Sirius, the brightest star in the night sky. His other dog, Canis Minor, lies to the east of Orion and is led by Procyon which forms an almost-equilateral triangle with Sirius and Betelgeuse – our so-called Winter Triangle.

The Moon stands about 15° above Procyon when it is eclipsed during the morning hours of the 21st. The event begins at 02:36 when the Moon lies high in our south-western sky, to the left of Castor and Pollux in Gemini, and its left edge starts to enter the lighter outer shadow of the Earth, the penumbra.

Little darkening may be noticeable until a few minutes before it encounters the darker umbra at 03:34. Between 04:41 and 05:46 the Moon is in total eclipse within the northern half of the umbra and may glow with a reddish hue as it is lit by sunlight refracting through the Earth’s atmosphere. The Moon finally leaves the umbra at 06:51 and the penumbra at 07:48, by which time the Moon is only 5° high above our west-north-western horizon in the morning twilight.

This eclipse occurs with the Moon near its perigee or closest point to the Earth so it appears slightly larger in the sky than usual and may be dubbed a supermoon. Because the Moon becomes reddish during totality, there is a recent fad for calling it a Blood Moon, a term which has even less of an astronomical pedigree than supermoon. Combine the two to get the frankly ridiculous description of this as a Super Blood Moon.

Sunrise/sunset times for Edinburgh change from 08:44/15:49 on the 1st to 08:10/16:43 on the 31st. New moon early on the 6th, UK time, brings a partial solar eclipse for areas around the northern Pacific. First quarter on the 14th is followed by full moon and the lunar eclipse on the 21st and last quarter on the 27th.

The Quadrantids meteor shower is active until the 12th but is expected to peak sharply at about 03:00 on the 4th. Its meteors, the brighter ones leaving trains in their wake, diverge from a radiant point that lies low in the north during the evening but follows the Plough high into our eastern sky before dawn. With no moonlight to hinder observations this year, as many as 80 or more meteors per hour might be counted under ideal conditions.

Mars continues as our only bright evening planet though it fades from magnitude 0.5 to 0.9 as it recedes. Tracking through Pisces and well up in the south at nightfall, it stands above the Moon on the 12th. Our maps show it sinking in the south-west and it sets in the west before midnight.

Venus, its brilliance dimming only slightly from magnitude -4.5 to -4.3, stands furthest west of the Sun (47°) on the 6th and is low down (and getting lower) in our south-eastern predawn sky. Look for it below and left of the waning Moon on the 1st with the second-brightest planet, Jupiter at magnitude -1.8, 18° below and to Venus’s left. As Venus tracks east-south-eastwards against the stars, it sweeps 2.4° north of Jupiter in an impressive conjunction on the morning of the 22nd while the 31st finds it 8° left of Jupiter with the earthlit Moon directly between them.

Saturn, magnitude 0.6, might be glimpsed at the month’s end when it rises in the south-east 70 minutes before sunrise but Mercury is lost from sight is it heads towards superior conjunction on the Sun’s far side on the 30th.

China hopes that its Chang’e 4 spacecraft will be the first to touch down on the Moon’s far side, possibly on the 3rd. Launched on December 7 and named for the Chinese goddess of the Moon, it needs a relay satellite positioned beyond the Moon to communicate with Earth.

Meantime, NASA’s New Horizons mission is due to fly within 3,500 km of a small object a record 6.5 billion km away when our New Year is barely six hours old. Little is known about its target, dubbed Ultima Thule, other than that it is around 30 km wide and takes almost 300 years to orbit the Sun in the Kuiper Belt of icy worlds in the distant reaches of our Solar System.

Diary for 2019 January

1st            06h New Horizons flyby of Ultima Thule

1st            22h Moon 1.3° N of Venus

2nd          06h Saturn in conjunction with Sun

3rd           05h Earth closest to Sun (147,100,000 km)

3rd           08h Moon 3° N of Jupiter

4th           03h Peak of Quadrantids meteor shower

6th           01h New moon and partial solar eclipse

6th           05h Venus furthest W of Sun (47°)

12th         20h Moon 5° S of Mars

14th         07h First quarter

17th         19h Moon 1.6° N of Aldebaran

21st         05h Full moon and total lunar eclipse

21st         16h Moon 0.3° S of Praesepe

22nd        06h Venus 2.4° N of Jupiter

23rd         02h Moon 2.5° N of Regulus

27th         21h Last quarter

30th         03h Mercury in superior conjunction

31st         00h Moon 2.8° N of Jupiter

31st         18h Moon 0.1° N of Venus

Alan Pickup

This is a slightly revised version, with added diary, of Alan’s article published in The Scotsman on December 31st 2018, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in April, 2018

Impressive conjunction before dawn for Mars and Saturn

The maps show the sky at midnight BST on the 1st, 23:00 on the 16th and 22:00 on 30th. An arrow depicts the motion of Jupiter. (Click on map to enlarge)

The maps show the sky at midnight BST on the 1st, 23:00 on the 16th and 22:00 on 30th. An arrow depicts the motion of Jupiter. (Click on map to enlarge)

The Sun climbs almost 10° northwards during April to bring us longer days and, let us hope, some decent spring-like weather at last. Our nights begin with Venus brilliant in the west and end with three other planets rather low across the south. Only Mercury is missing – after rounding the Sun’s near side on the 1st it remains hidden in Scotland’s morning twilight despite standing further from the Sun in the sky (27°) on the 29th than at any other time this year.

Edinburgh’s sunrise/sunset times change from 06:44/19:51 BST on the 1st to 05:32/20:50 on the 30th. The Moon is at last quarter on the 8th, new on the 16th, first quarter on the 22nd and full on the 30th.

Mars and Saturn rise together in the south-east at about 03:45 BST on the 1st and are closest on the following day, with Mars, just the brighter of the two, only 1.3° south of Saturn. Catch the impressive conjunction less than 10° high in the east-south-east as the morning twilight begins to brighten.

Both planets lie just above the so-called Teapot of Sagittarius but they are at very different distances – Mars at 166 million km on the 1st while Saturn is nine times further away at 1,492 million km.

Brightening slightly from magnitude 0.5 to 0.4 during April, Saturn moves little against the stars and is said to be stationary on the 18th when its motion reverses from easterly to westerly. Almost any telescope shows Saturn’s rings which are tipped at 26° to our view and currently span some 38 arcseconds around its 17 arcseconds disk.

Mars tracks 15° eastwards (to the left) and almost doubles in brightness from magnitude 0.3 to -0.3 as its distance falls to 127 million km. Its reddish disk swells from 8 to 11 arcseconds, large enough for telescopes to show some detail although its low altitude does not help.

Saturn is 4° below-left of Moon and 3° above-right of Mars on the 7th while the last quarter Moon lies 5° to the left of Mars on the next morning.

Orion stands above-right of Sirius in the south-west as darkness falls at present but has all but set in the west by our star map times. Those maps show the Plough directly overhead where it is stretched out of shape by the map projection used. We can extend a curving line along the Plough’s handle to reach the red giant star Arcturus in Bootes and carry it further to the blue giant Spica in Virgo, lower in the south-south-east and to the right of the Moon tomorrow night.

After Sirius, Arcturus is the second brightest star in Scotland’s night sky. Shining at magnitude 0.0 on the astronomers’ brightness scale, though, it is only one ninth as bright as the planet Jupiter, 40° below it in the constellation Libra. In fact, Jupiter improves from magnitude -2.4 to -2.5 this month as its distance falls from 692 million to 660 million km and is hard to miss after it rises in the east-south-east less than one hour before our map times. Look for it below-left of the Moon on the 2nd, right of the Moon on the 3rd, and even closer to the Moon a full lunation later on the 30th.

Jupiter moves 3° westwards to end the month 4° east of the double star Zubenelgenubi (use binoculars). Telescopes show the planet to be about 44 arcseconds wide, but for the sharpest view we should wait until it is highest (17°) in in the south for Edinburgh some four hours after the map times.

Venus’ altitude on the west at sunset improves from 16° to 21° this month as the evening star brightens from magnitude -3.9 to -4.2. Still towards the far side of its orbit, it appears as an almost-full disk, 11 arcseconds wide, with little or no shading across its dazzling cloud-tops. Against the stars, it tracks east-north-eastwards through Aries and into Taurus where it stands 6° below the Pleiades on the 20th and 4° left of the star cluster on the 26th. As it climbs into our evening sky, the earthlit Moon lies 6° below-left of Venus on the 17th and 12° left of the planet on the 18th.

The reason that we have such impressive springtime views of the young Moon is that the Sun’s path against the stars, the ecliptic, is tipped steeply in the west at nightfall as it climbs through Taurus into Gemini. The orbits of the Moon and the planets are only slightly inclined to the ecliptic so that any that happen to be towards this part of the solar system are also well clear of our horizon. Contrast this with our sky just before dawn at present, when the ecliptic lies relatively flat from the east to the south – hence the non-visibility of Mercury and the low altitudes of Mars, Saturn and Jupiter.

The evening tilt of the ecliptic means that, under minimal light pollution and after the Moon is out of the way, it may be possible to see the zodiacal light. This appears as a cone of light that slants up from the horizon through Venus and towards the Pleiades. Caused by sunlight reflecting from tiny particles, probably comet-dust, between the planets, it fades into a very dim zodiacal band that circles the sky. Directly opposite the Sun this intensifies into an oval glow, the gegenschein (German for “counterglow”), which is currently in Virgo and in the south at our map times – we need a really dark sky to see it though.

Diary for 2018 April

Times are BST.

1st    19h Mercury in inferior conjunction on Sun’s near side

2nd  13h Mars 1.3° S of Saturn

3rd   15h Moon 4° N of Jupiter

7th   14h Moon 1.9° N of Saturn

7th   19h Moon 3° N of Mars

8th   08h Last quarter

16th 03h New moon

17th 13h Saturn farthest from Sun (1,505,799,000 km)

17th 20h Moon 5° S of Venus

18th 03h Saturn stationary (motion reverses from E to W)

18th 15h Uranus in conjunction with Sun

22nd  23h First quarter

24th 05h Venus 4° S of Pleiades

24th 21h Moon 1.2° N of Regulus

29th 19h Mercury furthest W of Sun (27°)

30th 02h Full moon

30th 18h Moon 4° N of Jupiter

Alan Pickup

This is a slightly revised version, with added diary, of Alan’s article published in The Scotsman on March 31st 2018, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in March, 2018

Elusive Mercury is second evening star alongside Venus

The maps show the sky at 23.00 GMT on the 1st, 22.00 GMT on the 16th and 21.00 GMT (22.00 BST) on the 31st. Summer time begins at 01.00 GMT on the 25th when clocks go forward one hour to 02.00 BST. (Click on map to enlarge)

The maps show the sky at 23.00 GMT on the 1st, 22.00 GMT on the 16th and 21.00 GMT (22.00 BST) on the 31st. Summer time begins at 01.00 GMT on the 25th when clocks go forward one hour to 02.00 BST. (Click on map to enlarge)

Orion is striding proudly across the meridian as darkness falls, but, even before the twilight dims, we have our best chances this year to spot Mercury low down in the west and close to the more familiar brilliant planet Venus.

Both evening stars lie within the same field-of-view in binoculars for much of March, so the fainter Mercury should be relatively easy to locate using Venus as a guide. Provided, of course, that we have an unobstructed horizon. Mercury never strays far from the Sun’s glare, making it the most elusive of the naked-eye planets – indeed, it is claimed that many astronomers, including Copernicus, never saw it.

Blazing at magnitude -3.9, Venus hovers only 9° above Edinburgh’s western horizon at sunset on the 1st and sets 64 minutes later. Mercury, one tenth as bright at magnitude -1.3, lies 2.0° (four Moon-breadths) below and to its right and may be glimpsed through binoculars as the twilight fades. Mercury stands 1.1° to the right of Venus on the 3rd and soon becomes a naked eye object as both planets stand higher from night to night, becoming visible until later in the darkening sky.

By the 15th, Mercury lies 4° above-right of Venus and at its maximum angle of 18° from the Sun, although it has more than halved in brightness to magnitude 0.2. The slender young Moon sits 5° below-left of Venus on the 18th and 11° above-left of the planetary pairing on the 19th. Earthshine, “the old Moon in the new Moon’s arms”, should be a striking sight over the following few evenings.

On the 22nd, the 30% illuminated Moon creeps through the V-shaped Hyades star cluster and hides (occults) Taurus’ leading star Aldebaran between 23:31 and 00:14 as they sink low into Edinburgh’s west-north-western sky.

Falling back towards the Sun, Mercury fades sharply to magnitude 1.4 by the 22nd when it passes 5° right of Venus and becomes lost from view during the following week. At the month’s end, Venus stands 15° high at sunset and sets two hours later.

The Sun climbs 12° northwards in March to cross the sky’s equator at the vernal equinox at 16:15 on the 20th, which is five days before we set our clocks forward at the start of British Summer Time. Sunrise/sunset times for Edinburgh change from 07:04/17:47 GMT on the 1st to 06:46/19:49 BST (05:46/18:49 GMT) on the 31st. The Moon is full on the 2nd, at last quarter on the 9th, new on the 17th, at first quarter on the 24th and full again on the 31st.

Orion is sinking to our western horizon at our star map times while the Plough, the asterism formed by the brighter stars of Ursa Major, is soaring high in the east towards the zenith. To the south of Ursa Major, and just reaching our meridian, is Leo which is said to represent the Nemean lion strangled by Hercules (aka Heracles) in the first of his twelve labours. Leo appears to be facing west and squatting in a similar pose to that of the lions at the foot of Nelson’s Column in Trafalgar Square.

Leo’s Sickle, the reversed question mark that curls above Leo’s brightest star Regulus, outlines its head and mane and contains the famous double star Algieba whose two component stars, both much larger than our Sun, take more than 500 years to orbit each other and may be seen through a small telescope. Regulus, itself, is occulted as they sink towards Edinburgh’s western horizon at 06:02 on the morning of the 1st.

Jupiter, easily our brightest morning object, rises at Edinburgh’s east-south-eastern horizon at 00:47 GMT on the 1st and at 23:41 BST (22:41 GMT) on the 31st, climbing to pass around 17° high in the south some four hours later. Brightening from magnitude -2.2 to -2.4, it is slow moving in Libra, being stationary on the 9th when its motion reverses from easterly to westerly. Jupiter is obvious below the Moon on the 7th when a telescope shows the Jovian disk to be 40 arcseconds wide.

If we look below and to the left of Jupiter in the south before dawn, the three objects that catch our attention are the red supergiant star Antares in Scorpius and, further from Jupiter, the planets Mars and Saturn.

Mars lies in southern Ophiuchus, between Antares and Saturn, and is heading eastwards into Sagittarius and towards a conjunction with Saturn in early April. The angle between the two planets falls from 17° to only 1.5° this month as Mars brightens from magnitude 0.8 to 0.3 and its distance falls from 210 million to 166 million km. Mars’ disk swells from 6.7 to 8.4 arcseconds, becoming large enough for surface detail to be visible through decent telescopes. Sadly, Mars (like Saturn) is so far south and so low in Scotland’s sky that the “seeing” is unlikely to be crisp and sharp.

Incidentally, on the morning of the 19th Mars passes between two of the southern sky’s showpiece objects, being a Moon’s breadth below the Trifid Nebula and twice this distance above the Lagoon Nebula. Both glowing clouds of hydrogen, dust and young stars appear as hazy patches through binoculars but are stunning in photographs.

Saturn, creeping eastwards just above the Teapot of Sagittarius, improves from magnitude 0.6 to 0.5 and has a 16 arcseconds disk set within its superb rings which span 37 arcseconds at midmonth and have their northern face tipped towards us at 26°. The waning Moon lies above-left of Mars on the 10th and close to Saturn on the 11th.

Diary for 2018 March

Times are GMT until March 25, BST thereafter.

1st    06h Moon occults Regulus (disappears at 06:02 for Edinburgh)

2nd    01h Full moon

4th    14h Neptune in conjunction with Sun

5th    18h Mercury 1.4° N of Venus

7th    07h Moon 4° N of Jupiter

9th    10h Jupiter stationary (motion against stars reverses from E to W)

9th    11h Last quarter

10th   01h Moon 4° N of Mars

11th   02h Moon 2.2° N of Saturn

15th   15h Mercury furthest E of Sun (18°)

17th   13h New moon

18th   01h Mercury 4° N of Venus

18th   18h Moon 8° S of Mercury

18th   19h Moon 4° S of Venus

20th   16:15 Vernal equinox

23rd   00h Moon occults Aldebaran (23:31 to 00:14 for Edinburgh)

24th   16h First quarter

25th   01h Start of British Summer Time

27th   02h Moon 1.8° S of star cluster Praesepe in Cancer

31st   14h Full moon

Alan Pickup

This is a slightly revised version, with added diary, of Alan’s article published in The Scotsman on February 28th 2018, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in February, 2018

Conspicuous Jupiter leads trio of planets before dawn

The maps show the sky at 22:00 GMT on the 1st, 21:00 on the 15th and 20:00 on the 28th. (Click on map to enlarge)

The maps show the sky at 22:00 GMT on the 1st, 21:00 on the 15th and 20:00 on the 28th. (Click on map to enlarge)

February’s main planetary focus is the trio of Jupiter, Mars and Saturn in our predawn sky while Venus and Mercury begin spells of evening visibility later in the period. As the night falls at present, though, our eyes are drawn inevitably to the sparkling form of Orion in our south-eastern sky. Perhaps the only constellation that most people can recognise, it is one of the very few that has any resemblance to its name.

It is easy to imagine Orion’s brighter stars as the form of a man, the Hunter, with stars to represent his shoulders and knees, and three more as his Belt. Fainter stars mark his head, a club and a shield, the latter brandished in the face of Taurus the Bull, while his Sword, hanging at the ready below the Belt, contains the fuzzy star-forming Orion Nebula, mentioned here last month.

Since he straddles the celestial equator, the whole of Orion is visible worldwide except from the polar regions. Observers in the southern hemisphere, though, are seeing him upside down as he crosses the northern sky during their summer nights. For us, Orion passes due south about one hour before our map times.

The line of Orion’s Belt slants down to our brightest nighttime star, Sirius, in Canis Major which is one of the two dogs that accompany Orion around the sky. The other, Canis Minor, stands higher to its left with the star Procyon. This, with Sirius and Betelgeuse in Orion’s shoulder, form the equilateral Winter Triangle whose centre passes some 30° high in the south at our map times.

The Belt points up to Aldebaran in Taurus and, much further on, to the eclipsing variable star Algol in Perseus which we highlighted last month. This month Algol dims to its minimum brightness at 22:09 GMT on the 7th, 18:58 on the 10th and 23:54 on the 27th.

The Sun climbs 9.5° northwards during February as sunrise/sunset times for Edinburgh change from 08:07/16:46 on the 1st to 07:07/17:45 on the 28th.

A total lunar eclipse occurs when the Moon is full on 31 January, but finishes before the Moon rises for Scotland. The Moon lies close to Regulus in Leo on the 1st and is at last quarter on the 7th. The new moon on the 15th brings a partial solar eclipse for Antarctica and southernmost South America. First quarter occurs on the 23th when, late in the afternoon, it occults Aldebaran – a telescope should show the star disappearing behind the Moon from 16:37 to 17:47 as viewed from Edinburgh. The Moon is not full again until 2nd March.

Jupiter, brighter than Sirius and the most conspicuous of our morning planets, rises at Edinburgh’s east-south-eastern horizon at 02:27 on the 1st and 00:51 by the 28th, and climbs to pass 17° high in the south before we lose it in the dawn twilight. Creeping eastwards in Libra, it brightens from magnitude -2.0 to -2.2 while, viewed telescopically, its cloud-banded disk swells from 36 to 39 arcseconds is diameter.

Mars follows some 12° to the left of Jupiter on the 1st, rising in the south-east at 03:41 and shining at magnitude 1.2 less than a Moon’s breadth below the multiple star Beta Scorpii, Graffias, as they climb into the south. The planet tracks quickly eastwards against the stars, sweeping 4° north of the magnitude 1.0 red supergiant Antares on the 10th and making this a good month to compare the two. The name Antares means “rival to Mars” and both are reddish and, this month at least, very similar in brightness. By the 28th, Mars stands 27° from Jupiter, rises at 03:24 and shines at magnitude 0.8.

Saturn, now also a morning object as it creeps eastwards above the Teapot of Sagittarius, rises in the south-east at 06:13 on the 1st and by 04:37 on the 28th when it shines at magnitude 0.6 and is 17° to the left of Mars before dawn. Catch the waning Moon above-left of Jupiter before dawn on the 8th, above Mars on the 9th and above-right of Saturn on the 11th.

Venus is brilliant at magnitude -3.9 as it pulls slowly away from the Sun into our evening twilight but we need a clear west-south-western horizon to see it. Its altitude at sunset doubles from 4° on the 8th to 8° by the 28th, by which day it sets more than one hour after the Sun. As the month ends, use binoculars to look a couple of degrees below-right of Venus for the fainter magnitude -1.3 glow of Mercury as the small innermost planet begins its best evening apparition of the year.

For a real challenge, try to spy the very young Moon when it lies just 1.2° below-left of Venus soon after sunset on the 16th. Barely 20 hours old, the Moon is only 0.7% illuminated and may be glimpsed as the thinnest of crescents. It is more noticeable, and impressively earthlit, as it climbs steeply away from the Sun over the following days.

Alan Pickup

This is a slightly revised version of Alan’s article published in The Scotsman on January 31st 2018, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in January, 2018

Inconstant stars in stunning New Year sky

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to enlarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to enlarge)

Our evening sky is bursting with stellar interest but devoid of bright planets. Instead, Mars partners Jupiter in the predawn in the south-east to south while the impending spectacle of the annual Quadrantids meteor shower is rather blunted by bright moonlight.

The charts show Taurus high on the meridian, above and to the right of the unmistakable form of Orion whose brightest stars are the distinctly reddish supergiant Betelgeuse and the contrasting blue-white supergiant Rigel.

Between them lie the three stars of Orion’s Belt, while hanging below the middle of these is his fainter Sword with the Orion Nebula. The latter’s diffuse glow, visible to the unaided eye under decent conditions and obvious through binoculars, comes from a region where new stars and planets are forming. It lies some 1,350 light years away and is one of the most intensively studied objects in the entire sky.

Two iconic variable stars, Algol and Mira, are well placed in the evening. Algol in Perseus, the archetype of eclipsing variable stars, has two unequal stars that orbit around, and hide, each other every 2 days 20 hours and 49 minutes. Normally Algol shines at magnitude 2.1 and is almost identical in brightness to the star Almach in Andromeda, 12° to its west and labelled on the chart.

However, when Algol’s fainter star partially obscures its brighter companion, their combined light dips to magnitude 3.4, one third as bright, in an eclipse that lasts for about 10 hours and can be followed with nothing more than the naked eye. This month, Algol is at its mid-eclipse faintest at 02:45 on the 13th, 23:34 on the 15th and 20:23 on the 18th.

Mira, by contrast, is a single red giant star that pulsates in size and brightness every 332 days on average. It lies well to the west of Orion in Cetus, the sea monster of Greek mythology which was slain by Perseus when he rescued Andromeda.

During a typical pulsation, Mira varies between about magnitude 3.5, easy for the naked eye, and the ninth magnitude, probably needing a telescope. Unlike Algol, whose variability is like clockwork, Mira is less predictable and it has been known to touch the second magnitude, as it did in 2011. Now is the time to check, for it is close to its maximum as the year begins. Markedly orange in colour, it dims only half as quickly as it brightens so should remain as a naked-eye object throughout January.

Named for the extinct constellation of Quadrans Muralis, the Quadrantids meteors diverge from a radiant point in northern Bootes which lies low in the north at our map times and climbs to stand high in the east before dawn. Meteors are seen between the 1st and 6th but peak rates persist for only a few hours around the shower’s peak, due this time at about 21:00 on the 3rd when 80 or more meteors per hour might be counted by an observer with the radiant overhead in a clear moonless sky. However, with the radiant low in the north and moonlight flooding the sky at the time, expect to see only a fraction of these, perhaps trailing overhead from north to south.

Earlier on the 3rd, at 06:00, the Earth reaches perihelion, its closest point to the Sun in its annual orbit. Edinburgh’s sunrise/sunset times change from 08:44/15:49 on the 1st to 08:09/16:44 on the 31st. The Moon is full at 02:25 on the 2nd, only four hours after it reaches its closest point to the Earth for the entire year. There is a relatively modern obsession in dubbing such an event a supermoon, because the Moon appears 17% wider than it does when at its furthest. The difference between an average full moon and this one, though, is hardly “super” and far from obvious to the eye.

The Moon’s last quarter on the 8th is followed by new on the 17th, first quarter on the 24th and full again on the 31st when it passes through the southern half of the Earth’s shadow in a total lunar eclipse. Sadly, the event is over before sunset and moonrise for Britain.

Venus slips around the Sun’s far side to reach superior conjunction on the 9th and leave Jupiter as our brightest morning planet. Seen from Edinburgh, the latter rises in the east-south-east at 04:04 on the 1st and is climbing more than 15° high into the south before dawn. Conspicuous at magnitude -1.8 to -2.0, it creeps 4° eastwards to the east of the famous double star Zubenelgenubi in Libra and rises at 02:30 by the month’s end.

Mars, much fainter at magnitude 1.5, lies almost 3° above-right of Jupiter on the 1st and tracks more quickly eastwards to stand only 14 arcminutes (half a Moon’s breadth) below Jupiter before dawn on the 7th. The pair lie below the waning Moon in our predawn sky on the 11th when Jupiter’s cloud-banded disk 34 arcseconds wide and visible through any telescope, while Mars is still too small to appear interesting. Mars is brighter at magnitude 1.2 and stands 12° to the left of Jupiter by the 31st.

Mercury, bright at magnitude -0.3, may be glimpsed through binoculars as it hovers very low above our south-eastern horizon for more than 90 minutes before sunrise until the 8th. Given a clear horizon it may still be visible on the 15th when it stands 2.6° below-right of the vanishingly slender waning Moon. Saturn, half as bright at magnitude 0.5, lies 4° right of the Moon on that morning but is easier to spot by the month’s end when it rises almost two hours before the Sun.

Alan Pickup

This is a slightly revised version of Alan’s article published in The Scotsman on December 30th 2017, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in December, 2017

Geminid meteors sparkle during long December nights

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to enlarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 31st. (Click on map to enlarge)

December brings us spectacular night skies and arguably the richest meteor shower of the year, the Geminids. We still have the Summer Triangle of bright stars, Vega in Lyra, Deneb in Cygnus and Altair in Aquila, high in the south-west at nightfall while the unmistakable figure of Orion dominates the midnight hours, surrounded by his cohort of familiar winter constellations. By the predawn, the Plough sails overhead and the night’s only conspicuous planets shine to the south of east.

Our longest nights, of course, occur around the winter solstice when the Sun reaches its most southerly point in its annual trek around the sky. This occurs at 16:28 GMT on the 21st when Edinburgh’s night, measured from sunset to sunrise, lasts for 17 hours and 3 minutes, which no less than 10 hours and 39 minutes longer than at June’s summer solstice.

Sunrise/sunset times for Edinburgh during December vary from 08:19/15:44 on the 1st to 08:42/15:40 on the 21st and 08:44/15:48 on the 31st. The Moon is full on the 3rd, at last quarter on the 10th, new on the 18th and at first quarter on the 26th,

By our map times, the Summer Triangle has toppled low into the west and is being followed by the less impressive Square of Pegasus. The Square’s top-left star, Alpheratz, belongs to Andromeda whose other main stars, Mirach and Almach, line up to its left. A spur of fainter stars above Mirach leads us to the Andromeda Galaxy, whose oval glow reaches us from 2.5 million light years away.

Orion is in the east-south-east, his Belt pointing up Aldebaran and the Pleiades in Taurus and down to where the brightest nighttime star, Sirius in Canis Major, rises less than one hour later.

The Moon lies to the right of Aldebaran and below the Pleiades on the night of 2nd-3rd, to the left of Aldebaran a day later and comes around again to occult the star in the early hours of the 31st. We need a telescope to see Aldebaran wink out at the Moon’s limb at 01:01 and reappear at 01:57 as seen from Edinburgh.

It is from a radiant point near Castor in Gemini, north-east of Orion, that meteors from the Geminids shower diverge between the 8th and 17th although, of course, the meteors fly in all parts of the sky. With negligible moonlight this year, and given decent weather, we are in for a stunning display of sparkling long-trailed meteors whose paths point back to the radiant. Rates for an observer under an ideal dark sky could peak at more than 100 per hour at the shower’s peak on the night of the 13th-14th, though most of us may glimpse only a fraction of these.

Although most meteors originate as cometary debris, the Geminids appear to be rocky splinters from the 5 km-wide asteroid, Phaethon, which dives within 21 million km of the Sun every 523 days. In what is its closest approach to the Earth since its discovery in 1983, Phaethon sweeps only 10.3 million km from the Earth on the 16th when a telescope might show it as a tenth magnitude speck speeding past Alpheratz.

December’s second shower, the Ursids, derives from Comet Tuttle and is active between the 17th and 25th, peaking on the 23rd. Typically it yields fewer than ten meteors per hour so I rarely mention it here – I believe my last time was 37 years ago – but very occasionally it rivals the Geminids in intensity, if only for a few hours. The radiant point lies near the star Kochab in Ursa Minor and is plotted on our northern chart.

The unprecedented interstellar asteroid, discovered using a telescope in Hawaii and featured here hast time, has now been called 1I/’Oumuamua. This indicates that it is our first known interstellar visitor and employs the Hawaiian word ’Oumuamua to reflect its supposed status as a scout from the distant past. Further observations imply that it is remarkably elongated, being at least five times longer than it is wide.

Venus shines brilliantly at magnitude -3.9 very low in the south-east as the night ends, but is soon lost from view as it dives towards the Sun’s far side. It leaves Jupiter as our most prominent (magnitude -1.7 to -1.8) morning object. The giant world rises at Edinburgh’s east-south-eastern horizon at 05:31 on the 1st and 04:07 on the 31st, climbing southwards in the sky to stand some 15° high before dawn. Tracking eastwards in Libra, it passes 0.7° north of the celebrated double star Zubenelgenubi on the 21st.

Mars, fainter at magnitude 1.7 to 1.5, lies 16° above-right of Jupiter on the 1st when it is also about half as bright as Virgo’s star Spica, 3° below and to its right. As Mars tracks east-south-eastwards from Virgo to Libra it almost keeps pace with the Sun, so that it rises at around 03:50 throughout the month. By the 31st, it stands 3° from Jupiter, with Zubenelgenubi below and to Mars’ left in the same binocular field of view. The waning Moon forms a nice triangle with Mars and Spica on the 13th and with Mars and Jupiter on the 14th.

Saturn sets in our bright evening twilight as it heads towards conjunction beyond the Sun on the 21st. Mercury slips around the Sun’s near side on the 13th to become best placed as a morning star between Christmas and New Year. Between the 21st and 31st it brightens between magnitude 0.8 and -0.3, rises 100 or more minutes before Edinburgh’s sunrise and stands around 8° high in the south-east thirty minutes before sunrise.

Alan Pickup

This is a slightly revised version of Alan’s article published in The Scotsman on November 30th 2017, with thanks to the newspaper for permission to republish here.

Scotland’s Sky in November, 2017

Astronomers spot a mystery interstellar visitor

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 30th. (Click on map to enlarge)

The maps show the sky at 21:00 GMT on the 1st, 20:00 on the 16th and 19:00 on the 30th. (Click on map to enlarge)

Comets have always been of particular interest. Appearing without warning, and sometimes with impressive tails, it was not surprising that they were regarded as portents of battles to be won or lost and of the passing of kings.

It was in 1705 that Edmond Halley first published the orbit of the comet that now bears his name. This, and the more than 5,000 comets that have been studied since, have all proved to be members of our solar system.

Some, like Halley, follow closed elongated orbits, returning to perihelion in the Sun’s vicinity every few years. Many more, though, trace almost parabolic paths as they dive towards the Sun from the Oort cloud, a spherical reservoir of icy worlds at the edge of the Sun’s influence – if they ever return to perihelion it may not be for millions of years. A handful, though, receive a sufficient gravitational boost as they pass a planet that they are flung beyond the Oort cloud into interstellar space, never to return.

Now astronomers have sighted a faint object which appears to have originated far beyond the Oort cloud, perhaps as an escapee from another star. Discovered by the Pan-STARRS 1 telescope in Hawaii on 18 October, it had already reached its perihelion within 38 million km of the Sun nine days before and passed 24 million km from the Earth on the 14th. Dubbed at first Comet/2017 U1 (PanSTARRS) because of its highly eccentric comet-like orbit, its name was changed to A/2017 U1 on 25 October when observers failed to detect any trace of a tail or hazy coma surrounding its small nucleus, probably less than 200 metres wide. So, for the moment, it is classed as an asteroid.

Its path though is certainly hyperbolic, having entered the solar system at a relative speed of 26 km per second from a direction close to the bright star Vega in the constellation Lyra. This is also close to the direction that our solar system is moving at 20 km per second with regard to the stars around us, so it may be expected that interstellar intruders, be they comets or asteroids, are most likely to appear from this region. As our first known visitor from interstellar space, frantic efforts are underway to investigate its spectrum and nature before it recedes forever from view in the direction of the Square of Pegasus.

Vega, itself, is the brightest object very high in the south-west at nightfall, falling into the west by our star chart times as Pegasus and Andromeda occupy our high meridian. Orion is rising in the east below Taurus whose brightest star, Aldebaran, is occulted by the bright Moon on the morning of the 6th. Use a telescope to watch it slip behind the Moon’s lower-left limb between 02:27 and 03:26 as seen from Edinburgh

Our sole bright evening planet, Saturn at magnitude 0.5, is easy to miss as it hangs low in the south-west at nightfall, sinking to Edinburgh’s horizon at 18:40 on the 1st and by 16:58 on the 30th. We may need binoculars to spy it in the twilight 5° left of the young earthlit Moon on the 20th and 8° below-right of the Moon a day later. Mercury stands 22° east of the Sun on the 24th but is unlikely to be visible from our latitudes.

The other naked-eye planets are all in our predawn sky. Mars rises in the east just before 04:00 throughout November, climbing to stand 15° to 20° high in the south-east before its magnitude 1.8 pinprick is swallowed by the twilight. This month, it tracks 19° east-south-eastwards in Virgo to pass 3° north of Virgo’s leading star Spica on the 28th. Mars stands to the right of the waning Moon on the 15th when a telescope show it as only 4 arcseconds wide – too small to see any detail.

Venus continues as a brilliant morning star of magnitude -3.9, but it stands lower each morning as it approaches the Sun’s far side. Currently above and left of Spica but speeding east-south-eastwards into Libra, it rises a little more than two hours before the Sun on the 1st and one hour before sunrise by the 30th.

Jupiter, about to emerge from the Sun’s glare below-left of Venus, climbs to pass a mere 16 arcminutes, or half the Moon’s diameter, below-right of Venus on the 13th. Conspicuous at magnitude -1.7, the Jovian disk appears 31 arcseconds wide as compared with only 10 arcseconds for Venus. On the 17th, the incredibly slim earthlit Moon lies above-left of Venus and to the left of Jupiter while the later stands 18° above-right of Venus by the 30th.

Sunrise/sunset times for Edinburgh change from 07:20/16:32 on the 1st to 08:18/15:45 on the 30th. The Moon is full on the 4th, at last quarter on the 10th, new on the 18th and at first quarter on the 26.

The annual Leonids meteor shower lasts from the 15th to the 20th and peaks on the night of the 17th-18th. Its meteors, all of them very fast and many leaving glowing trains in their wake, emanate from the Sickle, the reversed question-mark of stars above Regulus in Leo. This rises in the north-east at 22:00, with most Leonids visible during the predawn hours as it climbs through our eastern sky. The shower has given some spectacular meteor storms in the past, notably in 1966 and 1999, but the parent comet, Comet Tempel-Tuttle, is now near the farthest point of its orbit and rates may be around a dozen meteors per hour. For once, though, moonlight is no hindrance.

Alan Pickup

This is a slightly revised version of Alan’s article published in The Scotsman on October 31st 2017, with thanks to the newspaper for permission to republish here.